[image: image1.bmp]
Calling a function:

RP_Call(
Node,Mode, Function, *Send, *Recv)

Node is a string that identifies a path, or an ID that was returned by RP_Open().

Mode is the calling mode: (Wait/NoWait, Realtime/High/Low)

Function is a string or possibly an enum token.
*Send is a pointer to a data structure to send to the remote routine.

*Recv is a pointer to data returned by the call.

Example:

 int S[20], R[20]; // Data to exchange

 int ID=RP_Open(“Hub2/Farm0/CPUs/Sharc_00”); // Connect to node

 RP_Call(ID, Wait|Realtime, “TestA”, S,R); // Run test

Also, there should be a library of pre-defined functions:

Memory manipulation (Write/Read/Block …)

Device manipulation (Reset/Run/Configure…)

Logging from remotes to host (Printf…)

At remote:

int * TestA(int * S) // Function definition

{ int R[20];

 … use data in S to do test

 … put results in R

 RP_Return(R);

}

SUMAC: At the lowest level, a remote procedure call is implemented by sending a message packet of the form:

struct

{ int32 Payload[*]; // Variable length, application-specific data

 struct // Followed by a 32-bit message header

 { int Message_ID :16; // ID of remote function

 int Channel_ID :12; // ID of remote endpoint to execute function

 int Priority : 2; // (Realtime/High/Low)

} Call_Packet;

This protocol is bi-directional: the host can call a function on a remote node and a remote node can call a function on the host. The size of the payload is limited (in the current Sumac implementation) to 2044 bytes (511 longwords) .

When an entire message is received by the hardware, an interrupt is generated and the message is delivered to the software. Realtime messages are processed immediately and before an acknowledge is returned. Other messages are placed on a queue and an immediate acknowledge is sent.

Note that most of this low-level stuff is hidden from the application-level interface. To the application programmer, the interface looks very much like a standard C-language function call. There will be a library of standard functions and tools to assist the application writer.

Open Log

Debug

Reset

Configure

Open UI

Host

Hub2

Farm0

Hub1

FPGAs

CPUs

Sharc_00

Memory Map

Functions

