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Pixel Trigger Queuing Analysisand Behavioral Simulations

1 Some System definitions

1.1 Introduction

The following document summarizes the results obtained by modeling and simulating part of the Level 1
Pixel Trigger Processor for BTeV. The portion modeled and simulated corresponds to the Trigger section
that process data from a Pixel Detector Triplet. A Pixel Detector Triplet is depicted in

The Level 1 Pixel Trigger architecture has been described elsewhere [ref]. In the current analysis it is
assumed that the Level 1 Pixel Trigger Processor is subdivided in a number of parallel branches called
highways (see The mapping of the Pixel data onto the highways is based on the data’s Time Stamp
(TS). For instance, if the number of highways is N, highwayl will receive data with Time Stamps
1,N+1,2N+1,..., highway2 will receive 2,N+2,2N+2,... and so forth. It is assumed that data acquired at any
TSisuncorrelated with other TS, hence can be processed independently.

1.2 The Pixel Detector structure

The data flow analysis and simulations make extensive use of Pixel Simulation Files. These files are Geant
simulations of the BTeV detector [ref Penny]. The particular files used for the Trigger data flow simulations
provide information of 3 complete Pixel Stations (N°: 15, 16, and 17). The stations are laid out as shown in

Figure 1]

Station 17
Station 17 7 on

Station 16\
Station 15

I'e
L »Station 16

planesat 12
different Z
locations.

Nonbend view

Y Z
X

A Pixel Station is composed of two Half Pixel Stations. Each Half Station has one half of a bend view
detector side and one half of a non-bend view detector side mounted on the same mechanical substrate. They
make a Pixel Half Station. This two half detector planes, the bend and the non bend views, are at about
0.57cm apart. The other Half Station that completes the Station is shifted about 2.25cm in Z. For instance, the
right side Half Station 15 is centered in Z between the left side Half Stations 15 and 16, and so forth. Right
and left halves of the Pixel Stations keep its separation through the Pixel Preprocessor and Segment Tracker
modules of the L1 Pixel Trigger Processor as detailed bel ow.

Figure 1 Pixel Detector Triplet
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1.3 The Input data file:

The Pixel datawas generated using the following parameters[ref]:

*  Pixel size: 50 x 400 microns,

e Chipsize: 22 columns, 128 rows

 Magneticfield: 1.6T

*  Threshold: 2000 e-

* Tota N° of Bunch Crossings (BCO): 745 and 4410

«  Luminosity: 2*10%2cm™2s ! (4 interactions per BCO on average)

* No of stations simulated: 3, corresponding to the central Triplet of the Pixel Detector (i.e. stations 15, 16,
and 17). Each Station is double-sided with one bend-view plane and one non-bend-view plane.

1.3.1 Somefile statistics

Two fileswere used to look at the L1 Trigger data flow. They were both generated using the same
parameters but the first file has 745 BCOs and the second one has 4410. The Table below summarizes and
compares some of their characteristics.

Number of ssmulated BCOs 745 4410
Total N° of Hits (6 planes): 260,855 1,549,192
Avg. No of tracks per BCO (1 plane): 25.14 24.84
Avg. No hits per BCO (1 plane): 58.35 58.60
Avg. No of hits generated by atrack crossing a single sided plane: 2.32 2.35

Figure 2 khows the hit distribution in one Half Plane.

histogram of hits in a single BCO0 ina Hal Pisel Plane
U T T T T T T

B 1 Mean~30

40 ED ED o0 120 140
Mo of pixel hits in a BCO

Figure 2 Pixel hit distribution in one Half Plane

The Pixel Preprocessor and Segment Tracker process pixel data coming from a Half Station. The Pixel Data
goes from the Pixel Detector planes through the Data Combiner boards and into the L1 Trigger. The Pixel
Detector Data Combiners split the data into a number of highways. As a consequence, the average data rate
into the L1 Trigger Pixel Preprocessor equals the total average data rate of a Half Pixel plane divided by the
number of Highways in the system. In the following example we consider that the Pixel Front-ends will spit
the data into 8 highways. The Pixel Preprocessors process one Highway from one Half Plane. The Segment
Trackers process 6 data streams, one from each Half Pixel plane which make a Half Station Triplet (as shown
in The purpose of a Segment Tracker is to find Inner and Outer Triplets of Pixel hits in 3
consecutive Pixel Detector Stations (actually, Half Stations for the current analysyis).
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Figure 3 Pixel Front End Highways

1.3.2 Front-end bandwidth

The bandwidths are calculated using Half Planes and Half Stations as units. Based on the current file, the
Half Pixel Plane generates an average of about 30 hits per BCO. If a pixel hit is represented by a 4 byte
binary word, the total bandwidth per Half Planeis very close to 1Gbyte/s or 8Ghb/s.

Since the Pixel Data Combiner boards split the data in 8 highways, the Pixel Preprocessor and Segment
Trackersreceive 6 x 1Gb/s links from the 6 Half Planes which form a Half Station Triplet.

1.4 Pixel Preprocessor and Segment Tracker

The Pixel Preprocessor and Segment Tracker have a functional block diagram as shown in A
Segment Tracker process the data from a Triplet of two-sided Pixel Half-Stations. A Pixel Preprocessor
module process a single-sided Pixel Half Plane (i.e. the bend view or the non bend view). The block diagram
in Figure 4]shows 6 Pixel Preprocessor modules and 1 Segment Tracker. Even if the hardware can
accommodate 6 Pixel Preprocessors and 1 Segment Tracker it still needs to send Pixel Preprocessor data to
the neighboring Segment Tracker processors because there are up to 3 Segment Tracker processors using the
same Pixel Preprocessor data. The function of the Segment Preprocessor Interconnection is to distribute the
data to up to three Segment Tracker stations. Note that data flow and module interconnection links do not
necessarily imply a one to one physical link.
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Figure 4 Pixel Preprocessor and Segment Tracker functional block diagram

1.5 The Pixel Front end

The purpose of the current document is to report on the data flow in the Pixel Preprocessor and Segment
Tracker of L1 Pixel Trigger. However, some modeling and simulation of the Pixel Front End was necessary
to obtain redlistic input data to the L1 Pixel Trigger. The Pixel simulation files provide a set of
chronologically organized events. A typical line of those filesis:

| BCO | PlaneNo | bend/nonbend | Xcoord | Ycoord | Zcoord | No pix hit |

However, the data does not arrive chronologically sorted to the Pixel Trigger. The process of data readout in
the FPIX chips of the Pixel Detector and the process of data readout and highway sorting in the Pixel Data
Concentrator boards scramble the data.

A more redlistic input data stream to the Pixel Trigger is needed in order to have better estimations of timing,
bandwidths, and queue sizes.
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The model used for the Pixel Front End is detailed in the Appendix. The Pixel Detector model considers the
fact that the hit density in the FPIX chips is not uniformly distributed across the Pixel Plane. The hit
distribution follows an inverse relation of the radia distance to the beam. As a consequence a FPIX chip
closer to the beam needs more serial communication channels to the Pixel Data Concentrators.

The Pixel Data Concentrator model includes a two-layer switch to route the data from about 84 inputs to 8
output highways.

2 Data flow analysisin the Pixel Preprocessor and Segment Tracker

The purpose of the data flow analysis in the L1 Trigger is to estimate the processing and storage
requirements, to create a timing and queuing map and to optimize hardware resources. The tools used in the
data flow analysis are two: queuing theory and behavioral simulations. The validity of the results depends on
the assumptions made in the modeling and the limitations of the input files used during simulation runs.
Some safety margins will be used in the design to account for all the unmodeled dynamics.

2.1 The Pixel Preprocessor Architecture

The Trigger Processor system must provide one trigger accept/reject per BCO, on average. Thisis achieved
by deeply pipelining the event processing. In order to optimize the throughput a number of buffers (queues)
are needed. The buffers smooth out data rate fluctuations and diminish processor’s idle times. An
advantageous feature of the Trigger Processor System is that the data events are independent (i.e.
uncorrelated) BCO wise. This characteristic facilitates the pipelining of the Trigger Processor by introducing
many processing units, which are allowed to work, asynchronously, on uncorrelated events. Using queues
between each two of those parallel processors alows pipelining by decoupling among data flows between
processors. figure 5]shows the proposed queuing model of the Pixel Preprocessor.

The first queue in the Pixel Preprocessor is generated by Input Link Receivers. The seria input data from the
optical links are unserialized and placed in the Input Link buffers.

The Time Stamp (TS) field of the input data is expanded to the full length needed to match the maximum
trigger latency. Latency here is defined as the time it takes the Trigger System to make a decision on weather
to accept or reject an event. The Segment Tracker and the Level 1 Buffers need the data sorted by TS. Since
the data from the Pixel Detector Front Ends come TS unsorted, they are sorted by the TS-ordering module.
The TS-ordering module transfers the input data from the Input Link Buffers to separate queues where the
data is ordered by TS. The TS ordering queues are the second set of queues in the Pixel Preprocessor. The
number of open queues varies according to the TS distribution in the data stream.

The time each TS-ordering queue is open to receive data must be set deterministically based on data
distribution analysis. Since the input data is chronollogically unsorted and the event size is variable, the end-
of-event time is unknown. We could wait a “long time”’ and still not be sure that an event corresponding to a
certain TS is complete. Hence, the most logical approach is to make the departure time from the TS Ordering
gueues deterministic with respect to its arrival time. The time every data queue must be kept open for
queuing (i.e. buffering input data of a certain TS) will affect the latency of the Trigger.

The thrird queue in the Pixel Preprocessor model (figure 5) is the input to the Pixel cluster finder and x-y
coordinate trandator (XY PC). This module reads data from an input buffer and writes grouped pixel clusters
into an output buffer. The input Pixel dataisin row column form, that means the hits are represented by the
physical row and column address of the Pixel Detector chip which detected those hits. A single track may
generate more than one hit in the detector chip. The XY PC processor translate a whole group of row column
hitsin asingle x-y pair, where x and y are in metric units with respect to the origin of the coordinate system.
The XY PC reduces the event size by afactor proportional to the average pixel cluster size.

The fourth queue level ([figure 5)]is the XY PC output buffer. It holds the x-y cluster data until is ready to be
processed by the Segment Tracker. The Segment Tracker needs x-y cluster data from the two neighbor
stations. The three queues generated by stations N-1, N, and N+1 are independent and work asynchronously.
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Figure 5 Queuing model for data flow analysis

2.2 The Pixel Preprocessor queuing analysis and simulation

2.2.1 The Input Link Buffer

The Input Link Buffer queue is fed by the Optical Receiver electronics. The expected maximum input
bandwidth of the optical channel is2 Gb/s. Thisis equivalent to 250Mby/s or 125 Mega-16hit words/s, which
is close to the maximum frequency that an FPGA can handle. However, the analysis of the Input simulation
file shows that the average bandwidth is about 1Gb/s

The processing time on the Input Link Buffer data is deterministic. The algorithm will do the following:

* Addanexpansion field for the data TS.

» Create an output queue (unless it already exists) and place the data onto that queue based on the data’'s
TS

Algorithm:
if queue with data’s TS already exist

engueue data in existing queue with its TS expanded
else

engueue data in a new queue with its TS expanded
end

Since the processing time is deterministic, the mean Input Link Buffer output rate, p, is constant and its
variance is 0. If L is greater that the maximum input bandwidth of the optical channel (62.5 Mwi/s), the Input
Link Buffer size needed is just 1 word deep. Note that u must be, at least, greater than the average input
bandwidth of the optical channel A to avoid queue instability. The value of A is directly proportional
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to the clock frequency of the input receiver and the Input Link Buffer’'s utilization factor. In the later case,
the Input Link Buffer behaves as a M/D/1 queue. The average queue size can be calculated by

E(Nq)=£—21’o_p where p=%

For the current simulation the input is distributed as shown in

hilograr af srmeale Nies the Pisal Feon Bade

0 100 00 L 400 i L1 00
chiks

Figure 6 Pixel Hit arrival distribution in the receiver’s queue

The arrivals at the receiver queue are exponentially distributed with A=0.26 hits/clock and the service time
is u=0.5 hits/clock. Hence,

The mean queue size becomes, E(N )= 0.82.
The simulations show that the Input Link Buffer queue does not exceed 1 word deep.

TECHWET QU §iTS

1§}
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a0 1 ] L] 500 Cr HID
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Figure 7 Receiver queue size
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2.2.2 The TS-ordering queues

During the TS-ordering process queues are born and aso die. A new queue is born when the TS event
ordering process receives data with a TS different to all the onesin the existing queues. A queue dies when
the data reception for that event is complete. As said above this time must be chosen deterministically. For
the current example this time will be equal to a complete revolution of the TS clock, that is ~21usif werall
over the TS counter at 159 BCOs, or 33.8us if we roll over at 256 BCOs. This number is, probably, too
conservative and adds an unnecessary latency to the data flow. However, it represents a worst case bound.
The simulations show data inefficiency in the TS-ordering queue as function of the lifetime of the TS queue
asit is shown below.

The full queueing analysis of the TS event ordering is fairly complex because the process must not only
consider the queue birth-death distribution but, also, the size distribution of each individual queue. At least,
we want to find the first moments of a probability distribution function, which defines the existence of each
specific queue and its size. If we look at individual queues thisis a non-stationary problem. However, some
simplifications can be made. We can define a new process looking only at the number of queuesinthe TS
event ordering system, regardless of their sizes. This new process is a well-defined birth-death Markov
chain. Each state represents the number of existing queues in the system (Figure 8]. The process can be
modeled as a M/D/e process. The birth time of the queues are generated by random queue arrivals. The
interarrival times can be considered exponentially distributed. Queue deaths are caused by complete events
leaving the system. The interdeparture times are deterministic.

M 2u 3u
Figure 8 TS-ordering state transition model

When the TS ordering process receives data with anew TS, it opens a new queue immediately. That is, it
starts processing the incoming event without queueing it. The response time of the server increases linearly.
We can define:

A: queue birth rate

Mk = kM : queue death rate

A represents the rate at which new queues are generated. From simulations the total Pixel Detector Half
Station data rate is shown to be 0.9 events/BCO for 4int/BCO and 0.71 eventsBCO for 2int/BCO. Thisrate
is reduced by the fact that the events are separated along K parallel highways based on TS. Considering
K=8 and that all TS are equally probable, the data rate in each branch (which is the interesting number
here) is:

A=0.1125 events/BCO.
In other words, the interarrival time Ta (i.e the average time between two new queue arrivals) is:

Tx = /A =8.88 BCOsfor aluminosity of 4int/BCO.

M, the service rate, is deterministic and equal to the time we want to wait before considering that the event
iscomplete. In this example we set U to 1/(159 BCOs) or 0.006289 BCO .
The M/D/e processis always stable. The probability distribution function of this system is given by
k
Py = (/]/T'Lll)e_/]/:u k=012,..
The average number of queues in the system is given by:
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E( q) = i = % =17.89queues
M 0.006289
, . o : (N q) 1
The average response time of the system to a job, using Little's formula, is T = - =—=159BCOs,
U

which is obvious because the system’ s service time is deterministic.

The simulations of 750 and 4410 BCOs show similar results (Figure 9). The number of TS queues open
increases linearly at the beginning and stabilizes at around 18 queues. If we discard the transitory (the first
200 BCOs) the average number of queues from simulation is 18.25 and 18.13 respectively.

wrnher r IS peasa number of TS queues

|:i | L i LN

1] _:I:I _1'l.| :':. i £ L- 5- I:. F: i 3 :l-' m i 0 5‘00 1(;00 15‘00 20‘00 25‘00 30‘00 35‘00 40‘00 4500

Figure 9 Simulation of the Number of TS queues. (9.a. 750 BCOs. 9.b. 4100 BCOs)

Before modeling the individual queues some data bounds can be calculated using the same system model.
If we take into account the average number of queues and the average event size we can expect an Avg.
Number of datawordsin al the queues of abouit:

Avg. N data= E(Nq) * Avg. event size = 17.89queues * 30 hits = 536 hits.

This number is too pessimistic because if we take the averages as deterministic parameters (i.e. the system
has always 18 queues open and the event size is constant at 30hits/event) it implies that all the queues are at
maximum data capacity. The dynamics of the process tell us that this is not true and the total humber of
words in the queues must be smaller than that.

The analysis of the individual queues can be performed as follow: We can calculate the conditional
probability distribution function of queue occupancies given that there are N queues and the total sum of

data words in the queues is M. The selection of data in the queues can be modeled as a generalized
binomial distribution:

m
P(M1(t) = mi, M 2(8) = mg,es M (1) = ma [ M () = M N(Q) = 1) = ———— p" pf™... p™
m:ma:...mp!

n

where: Zn:pi=1 and Zmi=m
i=1

Since the input data-stream which generates the queues with individual TS is a Poisson process,

P(M(t)=m)= e_’“%

Then, we can take away the conditionality on the total number of words m
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( — — — - )_ m m M2 my At (/]t)m
PIM1(®) =mg, M 2(t) =mp,...; Mn(t) =mp |, N(q) =n) = 1 : [ R =)
m!mp!...mp! m

the last equation can be written as

- g Pt (pAD™

P(M1() = m, M2(0) = mz.. Mn () =mn |, N(@) =n) = ] ' @
since dl the TS are equally probable p, = p,=...= p,=1/n

(2

n m
P(M1(0) = mu. M 2(0) =z M () = m . N@ =) = /™ 7] %
=1 :

Equation (2) is still conditioned by a fixed number of queues in the system. However, it let us study the
distribution of data in the queues for a certain number of key values. For instance we can let N be the

average number of queues or some upper bound.

What equation (2) shows is that for a given N the distribution of M1(t)...Mn(t) are independent Poisson

processes with data rate At/n. It is also known that as well as the interarrival times in a Poisson Process are
exponentially distributed, the k-iterated interarrival of an event in (1) follows a k-stage Earlang distribution.

In our case the distribution is conditioned for N fixed.

We can further simplify the job if we are only interested in the average total number of wordsin all the TS
ordering queues. The average number of hitsin the TS-ordering queues can be calculated using the average

number of TS-queues and the average number of hits per event.

E(Nq)=£ where p =%

A=hit_input _rate=0.241124
4= .A\./g - NoTS_. ordql ng _ queues — 0249587
Deter ministic_queuing _time x 14clk/BCO

£ =0.993966

E(Nq):ﬁ = 165hits
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The simulations of about 750 and 4410 BCOs show an average number of words of 202.8 and 243.03,
respectively, passed the initial transitory. Clearly the average number of words has not reached full steady
state after 750 BCOs

rirides ©fsmnrn o e T ELrEEn number of words in the TS queues

350
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250

200+
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m {21 1] T 5 1] 0 500 1000 1500 2000 2500 3000 3500 4000
o

Figure 10 Simulation of the Number of wordsin the TS queues. (10.a. 750 BCOs. 10.b. 4100 BCOs)

2.2.2.1 Time Stamp distribution and inefficiency in the TS-ordering queues

As said, the TS-ordering process opens one individual queue for each TS in the data stream. These queues
are opened for data collection during a deterministic time. When that time is over, the queue is closed and
loaded into the XY PC input queue for data grouping. All data having a TS field corresponding to a queue
that is closed islost and contributes to inefficiency in the Trigger. This problem can be solved by increasing
the time the queues are open for data collection, but that, of course, increases the latency of the Trigger. In
other words, it increases the time an event in the entire BTeV detector must be stored waiting for a trigger
accept or reject.

The TS scrambling in the data stream is generated by the scattered and asynchronous way in which Pixel
data is collected and routed to the Trigger system. The analysis of the Pixel Detector’s readout is outside
the scope of this document. However, we here present a crude simulation to illustrate the problem. In order
to study the Triger's Pixel Preprocessor we have generated a simplified model of the Pixel Detector and
Data Concentrator’s readout. A detailed model can be found in the Apendix.

and b shows the distribution of TS spread (i.e. the distribution of times between the first and the
last event word with acertain TS).

G.C 11
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Figure 11 Distribution of TS spread in the data

and b show the data inefficiency as a function of the time the TS-ordering queues are open for
data collection. The distributions in a and b correspond to “highwayed” data from 2 of the 6

planes that feed a Segment Tracker Triplet. It can be noticed that even when the amount of data generated
for each plane is similar, the distributions are quite different and the minimum time required for data
collection in the TS-ordering queues varies alot.
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Figure 12 Inefficiency in the TS-ordering queues

2.2.3 The x-y pixd cluster (XYPC) queue

The x-y pixel cluster (XY PC) queue can be modeled as a“bulk” M/M/1 process. In such a process the data
arrives at the input queue in “bulks’. The x-y trandator buffer receives “bulk” arrivals from the output of
the TS ordering process. Every time the TS ordering process closes a queue, that entire queue is placed in
the x-y trandator buffer. This queueis of variable size and equal to the size of the event that generatesit. In
other words, the x-y trandator’s queue is composed by a number of queued customers, which are in turn of
variable length. This problem is a generalization of the system with an r-stage Earlangian service, in this
case using variabler. The bulk arrival state-transition diagram can be represented asin

G.C 12
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Figure 13 XY PC state transition model

A good idea of the bulk size distribution g is given by the event size histogram provided by the simulations
(Figure 2),
Let gi = Prob[bulk sizeisi], then zizlgi =1
The equilibrium equations for the bulk arrival system are:
k-1
(A+4) Py = U Part D PAG k>1 (1)
i=1
Apg=Hup

The numbers we are looking for are the size of the x-y trandator queue and the average service time. The
solution of the equilibrium equations involves z-transform methods. The bulk M/M/1 queue size in
equilibrium suffers a “modulation” effect caused by the changing size of the events (bulks). This
modulation is reflected in the discrete convolution shown in equation (1). As we know, discrete
convolutions are much easily handled in the z-transformed plane because they turn into the product of the
z-transforms. The z-transform of the probability distribution is

P(2) = HA-p)A-2)
H(1-2)-71-G(2)]

@

Here P(2) represents the z-transform of the probability distribution of the x-y transform queue size and G(z)
is the z-transform of the probability distribution of the bulk size. The utilization factor p is defined, as
usualy, p=1-Po. The value of p can, aso, be obtained from (2) taking into account that P(1)=1.

AG (D)

Then, p = . Thisresult is not surprising because G (1) isthe average bulk size, hence A G (1) isthe

average arrival rate and 1/ is the average service rate.

The average queue size can be directly calculated from (2) using the method of moments.
E(N) = 9P()
dz z=1

2AG' D) +AG"()

2{ i —/IG'(l)i
If we assume that gk follows a Poisson distribution then
G(z) = D7 where a is the spread in the event size distribution.
G'(z) =a ez D
G'(2) = a2z Va

After some algebra, E(N) = . Of course, this equation depends on the gk distribution.

Then expected number of queues in the bulk M/M/1 processis
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2
2Aa+Aa” . It can also be expressed in terms of O, E(N) =M
2u-1a) 21-p)

E(N) =
using A=0.0083, u=0.1072, a=25, E(N)=0.103

In fact, as it can be appreciated in the hit distribution is not Poisson. We can approach it much
better using a Rayleigh or a Landau distribution.

The Rayleigh distribution can be expressed as:

Foyjmg pdemim

Figure 14 Rayleigh distribution

2

x X
fx(x)=—ze 202
g

The Rayleigh distribution is a continuous pdf. Its Fourier transform can be calculated as

o © 2

X
F(w) = j f(X) & WX dx = jize 207 &~ WX gy
g

-0 —00

after solving this we get

—w2o2
F(w) = jwa\/ge 2

and its counterpart z-transformis (using z = ejW):

G(2) = J\/gln(z) Z%

the n-iterated derivatives of G(z) are:

i _ ]_T —| 024‘1} _02
G(z)—01/2 Z[ 2 1 > In(z)]
G'(2=0 i {02*2]_(_1) 12+1 1—22In(z) _12
A PR 2 2 2
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The z-transform derivatives calculated at z=1 are

G'()= 0'\/;
G"(l)-—a\/7 (1

Then expected number of queues in the bulk M/M/1 processis

R

E(N) =
T
2 ,u+/10'\/;j
Using p= A i(l) , equation (4) can be written as
_ plo?-1
1-p)

The Raileygh distribution fits much better the data distribution of Figure 9. The parameter o can be
calculated using Maximum Likelihood Estimation (MLE) over the data sample. MLE estimation is
straightforward using Matlab. ows the MLE values of o and the mean queue size for the 6 Half
Pixel Planesin the current example,

Tablel
Half Pixel Plane & Mean XY PC input
gueue size E(N)
N-1 bend 31.15 4,02
N-1 non bend 21.64 1.94
N bend 3174 4,18
N non bend 23.50 2.29
N+1 bend 31.87 421
N+1 non bend 21.97 2.0

A 4410 BCO simulation shows that the XY PC queue is empty half of the time and peeks suddenly every
time abulk fillsit up. Since the bulk interdeparture timeis fairly smaller than the bulk interarrival time, the
gueue shows to return to 0 most of the time. The BB33 input queue shows a similar behavior. Figures 15
and 16 show the simulation of the XY PC and BB33 input queues for plane N-1 non bend. The mean size of
the XYPC input queue is E(N)= 4.32. The mean size of the BB33 input queue is E(N)=2.83

GC 15
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2.3 The Segment Tracker Architecture

As said in section 1.3.1, the Segment Tracker finds 3-station long inner and outer triplets. The current
analysis is based on the proposed BB33 agorithm. A detailed description of the BB33 can be found in
[Ref1] [Ref2]. The Segment Tracker receives input from 6 Half Planes corresponding to the bend and non-
bend views of three consecutive stations in the Pixel Detector. There is a queue associated to each input to
store the incoming data. We have, also, defined other 7 internal queues for temporary data storage, which
allows pipelining through the processing modules.

Station N-1 Station N
Bend Bend

' .

Long
doublets
Station N+1

Long doublet Bend
projections l

Triplets

) Triplets Triplets
StationN-1  projection projection  Station N+1
nonbend Station N nonbend
l Triplets norlbend l
projection
N-1 Short N Short N+1 Short
doublets doublets doublets
Short doubl et
outputs

MUX

BB33 outputs

Figure 17: The Segment Tracker Architecture

Each of the first five modules in the BB33 algorithm process entire events of data coming from two
sources. Here, we associate the word event with all the data generated by a particular section of the Pixel
Detector (i.e one Half Plane) during one BCO time. As shown in the pixel hits preprocessed by
the Pixel Preprocessor accumulate in the input queues of the BB33 processing modules. An event is
processed when the buffer manager of a processing module detects that one event in each of the two input
gueues are complete. The buffer manager of each processing module synchronizes the data streams. The
buffer managers are not explicitly shown in the block diagram above but are the first function in each
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processing module. Each processing module produces pixel doublets and projections as results, which are
used asinput for the next processing module.

2.4 Analysis and simulations of the BB33 dataflow

2.4.1 Analysis of the BB33 queues as events in the buffer manager

The data flow of the BB33 algorithm can be analyzed in several ways. We can start with the simplest
analysis, disregarding the individual pixel hits that accumulate in the input queues and only looking at the
output of the buffer managers. As said, the buffer managers output a random sequence, which can be
represented by a Poisson process. The buffer managers store data in the two input queues that they control,
until they detect that a complete event is in the queue. At that time they issue a “complete event” primitive
that is used by the processing module to start the event processing. This “complete event” sequence can be
modeled by a Poisson process. The BB33 agorithm is seen as an open network of queues, where inputs are
Poisson. The simulation shows that the 5 data mean arrival rates and mean processing times are as specified
by the following table:

Table2
Pixel Half Plane Event arrival rate (Ai) | Event service rate P
(eviclk) (ev/clk)
Long Doubl et 0.0089 0.0184 0.483
Triplet 0.0089 0.019 0.468
N-1 short doubl et 0.0089 0.34 0.026
N short doublet 0.0089 0.33 0.027
N+1 short doublet 0.0089 0.35 0.025

This means that mean number of queued events in the Long Doublet processis
A
E(r)=-2—=009368 where p=2 =0.4837
1-p H
where pisthe utilization factor.

We can estimate the average number of hitsin the N-1 bend and N bend queues by multiplying the Average
event size to the result above.

E(N,) = E(E.)* E(R,) =11.52* 0.9368 = 10.79
Figure 18]shows the queue sizes of N-1 bend and N bend planes during a simulation run of 750 BCOs,

BE33 qiids AiTss

--- N-1 bend
--- N bend

Mo waidy
B

5 [I||'|'1 H | H.r'n

[ oo 20 =00 400 =i am o0 B0
BlO

Figure 18 BB33 queue sizes
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The average queue sizes after smulating 4410 BCOs are:

N-1 bend: 10.94

N bend: 11.38

These values reasonable close to the calculated. Note that during the first 159 BCO the queues are empty.
This is caused by the transitory in the TS-ordering queues, which adds a deterministic latency of 159
BCOs.

The analysis of the other queuesisfairly similar. Figure 19|shows all the queue sizes

BB33 queue sizes BB33 queue sizes
T T T T T

--- N-1 bend queue --- N+1 nonbend queue
--- N bend queue --- N triplet projection queue
N+1 bend queue 3001 N-1 nonbend projection queue
--- N-1 nonbend queue --- N nonbend projection queue
N nonbend queue “ I N+1 nonbend projection queue
i

250
| |

1)
. j" | ool

No words
No words

i |

U I‘H‘.‘ Lok e ]
T TR

@
3

| |

0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000
BCO BCO

l !l

Figure 19: BB33 queue sizes 19.a) Bend and Non-bend Input queue sizes. 19.b) Projection queue sizes.

The average queue sizes are summarized in the following table

Table3
Queue size Mean and o

Queue Mean o

N-1 bend 9.527 11.94
N-1 non bend 29.73 25.90
N bend 10.08 12.82
N non bend 30.23 25.70
N+1 bend 26.61 21.74
N+1 non bend 27.99 23.27
N triplet projection bend 18.03 39.32
N-1 projection non bend 0.101 0.562
N projection non bend 0.104 0.570
N+1 projection non bend | 0.102 0.555

Although the average queue sizes are relatively small, transitory events may cause high peeks in the queue
size. For instance, the triplet-projection-queue size in Figure 19). shows a high peek around BCO 3500.
This is caused by consecutive large events of about 25 tracks each accumulating while the module is
processing also a large event. Since the utilization factor of the module is about 50% the Segment Tracker
recovers fairly quickly.

Four of the BB33 processing modules (i.e. the triplet and the 3 short doublet processors) perform a very
similar task to the Long Doubl et processor. The main difference is that in each one of these four processing
modules, one of the queues is the output of a previous processing module in the BB33 algorithm. For
instance the Triplet processor process data from two queues, the input of one of them is the output of the
Long Doublet processor. We are interested in the pdf of thisinput. We can extend the analysis to the Short
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Doublets as well. For that, we can take the processing modules in pairs. Each pair can be seen as a network

of queues as shownin

A1 Processing H1=A2 Processing
- > module | > module I

Y

Figure 20 Network of queues

If the arrival and service distribution functions of the Processing module | are exponentially distributed
with parameters A1 and p1 respectively, it can be shown using the Laplace transform that the departure is
exponentially distributed with parameter A1. This means that the input to the Processing module 11 is, also,
Poisson distributed with parameter A1. This property can be applied to the Short Doublets as well. Thisis
the justification to why the input to the Triplet and Short Doublet processes can be seen as Poisson. If the
service distribution functions of those processes are exponential, then the queues are M/M/1 queues.

2.4.2 Analysis of the BB33 queues asa “ bulk” service process

A more detailed analysis of the BB33 queues must look at the full dynamics of the number of hits in the
gueues. The processes can be modeled as “bulk” service. In the “bulk” service process the input queue
receives single arrivals but allows “bulks’ of variable size in the departure. The state transition diagram of
the “bulk” service process only alows “birth” type of transitions to a neighbor state on the right. However,
the “death” transitions (i.e. right to left) can be to non-neighboring states. Asin the “bulk” arrival case we
must define

gi = Problbulk sizeis], then > " g, =1

gi hasa“modulation” effect over the distribution of the queue size pi.
The equilibrium equations for the bulk arrival system are:

A+1) pe=ApeqtH Zpi gk k>1 *)
i=k+1

Apo= 1Y, P g,
i=1

Figure 21 Bulk service queuing model

Using the Z Transform
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P(Z)= Z & zK
i=1
equation (*) becomes

[oe] [ee] k
( +ﬂ)(P(Z)—P0)= UP(Z)+NZ 2. Pgikz k>1 (**)
k=li=k+1
the last term of equation (**) is a double summation. If we change variables in the inner summation

HY Y P02 where j=i-k
k=1j=1
We can work it out swapping the summations and momentarily fixing j. Then, thislast term becomes
KX TP zk=%gk{P(z)— > py zk} where ] = fixed  (**%)
k=1j=1 Z k=0
combining (**) and (***) the equilibrium equations become

(4 +/1)(P(Z)—Po)= Z/‘P(Z)Jr”é_:i::lpi g Z¢ k>1

_ H j kK|l . ¢

(/l +,u)(P(Z)— po)—Z/lP(Z)+—kgk{P(Z)— Z ka } j = fixed
Z k=0

Equation (****) can be solved for j=fixed but becomes analytically intractable if we try to solve for all j. j

represents the size of the bulk departing from state k after processing. A good estimation can be achieved
using the average bulk size and solving for afixed j=Avg bulk size.

The solution to that is shown in the Appendix I1. The final equationis,

P(Z) = 1Yz,

1-2/7,

We can obtain the distribution inverting the last equation

k

pk=[1—ij 1 , Where Zo is obtained from equation (****),
Z)\ 70

Pk is geometrically distributed. Its mean valueis

2
1 Zo

Zo—l

E(N)=z, .

Y
Z
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The simulations show that the 6 data individual data streams are Poisson processes with rates as specified
by the following table

Table4
Pixel Helf Plane  Queue arrival rate (Ai) (hits/clock)
N-1 non bend 0.1072
N-1 bend 0.1014
N non bend 0.1116
N bend 0.1014
N+1 non bend 0.1133
N+1 bend 0.1023

The superposition of two independent Poisson processes is also a Poisson process with arrival rate equal to
the sum of the individual input rates. The combined arrival rate for stations N-1 bend and N bend at the
input of Long Doublet processing module is 0.2028 hits/clock.

(write results here)

G.C 22



PRELIMINARY 09/24/02

2.4.3 Latency and Processing Times

In this section we analyze Processing Times in each stage of the Pixel Preprocessor and Segment Tracker.
The Processing Time of a piece of data or the Service Distribution Time in a Processing module determines

the queue sizes and the utilization factor of each processing stage.

Table5

Pixel Preprocessor

Processing Distribution Average Processing Time
Receiver interface deterministic 2 clockg/hit
TS-ordering (queue) deterministic 159 BCOs (4452 clocks!)
TS-ordering (hits) exponential 18.8 clockg/hit
X-Y trandation & grouping | Rayleigh 1+Nohits/group = 3.2 clk/hit
Segment Tracker
Processing Distribution Average Processing Time
Long Doubl et Rayleigh: 54.48 clocks/event
1clk+AvgNoQuerys/BCO* (2+Avg
Nomatches/query)
Triplet Rayleigh: 43.87 clocks/event
1clk+AvgNoQuerys/BCO* (2+Avg
Nomatches/query)
Short Doublets Rayleigh: 3.01 clock/event
1clk+AvgNoQuerys/BCO* (2+Avg
Nomatches/query)

We define latency in a specific stage of the Pixel Preprocessor and Segment Tracker modules as the time
between the arrival of the first hit of a particular event to a stage and the time when that event departs from
that stage.

The latency in the Pixel Preprocessor and the Segment Tracker is dominated by the sorting time in the TS-
ordering queues. The TS-ordering process adds a fix 2226 clock cycles to the processing of every queue.
The most delayed hit is the one that arrives first and gives birth to a new queue. Then, other hits with the
same TS join the same queue. We can see the exponentia nature of those arrivals in The
highlighted area of the figure shows that the latency added by the rest of the modulesin the Pixel Processor
isvery small. This latency is represented by the time to the right on the yellow line (i.e. the fix latency line
of the TS-ordering module).

The mean latency times are 172.22 BCOs and 13.22 BCOs respectively, and the Standard Deviation is
4.27.

G.C 23




PRELIMINARY 09/24/02

3000

Histogram of Latency in the Pixel Processor
T T T

A

22001 = Fix time latency
line of the

= TS-Ordering
module = 2226
clocks

2000 -

1500|

1500 1000

words

500)

1000 - l
o
w 1950 2000 205 200 2150 2200 2250 2300

500 -

0 | L . .
800 1000 1200 1400 1600 1800 2000 2200 2400
time in clocks (106MHz)

Figure 22 Distribution of latency in the Pixel Processor and Segment Tracker

2.5 Data Bandwidth Analysis

This section estimates data bandwidths at several points of the Trigger Architecture showed by Figure XX.
Those points are indicated by numbers between parentheses.
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The bandwidth cal culations assume the following:

*  The number of highwaysinthe L1 Trigger Systemis 8. The Pixel Detector Data Combiner Boards
perform the highway operation.

» Asingle Pixel hitisrepresented by 4 Bytes.

» A group of N consecutive Pixel hits generated by a single track are represented by 4*N Bytes.
Although it will, most likely, be implemented using a smaller number of bytes.

e TheTime Stamp extension is adds 2 Bytesto the original TS.

* A Segment Tracker Triplet isrepresented by 16 Bytes.

» Thereare 56 Segment Trackers per highway. A total of 448 Segment Trackers.

» Thetota number of Track and Vertex processors needed is ~ 2500

* Thereare52 6-DSP-Farmlets per highway. Totalizing 416 Farmlets and 2496 processors.

»  Theresult message from the Farmlet to GL1 isfixed at 50 Bytesin length.

Tota bandwidths

1 Highway 8 Highways
No of BCOs simulated 4410 4410
(1) Raw Pixel Data (in pixel hits) 3.32 Ghitg/s 26.6 Ghits/s
(1) Raw Pixel Data (in Bytes) 13.3 GB/s 106.4 GB/s
(2) TS Extended Raw Pixel Datato L1 Buffer 3.32 Ghits/s 26.6 Ghits/s
(2) TS Extended Raw Pixel Datato L1 Buffer 19.95 GB/s 159.6 GB/s
(3) Triplet Data out of Segment Tracker 153.8 Mtriplets/s 1.23 Gtriplets/s
(3) Triplet Data out of Segment Tracker 2.46 GB/s 19.68 GB/s
(4) Triplet Data out of Switch 153.8 Mtriplets/s 1.23 Gtriplets/s
(4) Triplet Data out of Switch 2.46 GB/s 19.68 GB/s
(5) DSP Resultsto L1 Buffer (in No messages) 0.947 Million/s 7.57Million/s
(5) DSP Resultsto L1 Buffer (in Bytes) 200 MB/s 1.5 GB/s
(6) DSP Resultsto GL1 (in No messages) 0.947 Million/s 7.57Million/s
(6) DSP Resultsto GL1 (in Bytes) 47.4 MB/s 378.5 MB/s

Individual Bandwidths
Single Link

(1) Half Plane, Highwayed Raw Pixel Data Input to Pixel Processor (in Bytes) 110.87 MB/s
(3) Single Segment Tracker Triplet Data Output 43.94 MB/s
(4) Single Switch output to Farmlet 47.3 MB/s
(5) Single Farmlet to L1 buffer output bandwidth 3.64 MB/s
(6) Single Farmlet to GL 1 output bandwidth 0.91 MB/s

Note: The Individual Bandwidth information does not necessarily imply a one to one relationship with a
physical link. Although it may be convenient in some cases.

2.6 Data Throttling

The L1Trigger, and the whole BTeV readout-DAQ system, is "data push”. This concept implies that the
datais pushed forward from one stage to the next without any handshaking mechanism between interfacing
stages. In other words the stage downstream in the readout process must be able to deal with the datathat is
being pushed by the previous stage at all times. However, this does not mean that the stages must supply
infinite data queuing or infinite processing bandwidth, but it means that they must dea with eventual
buffering or processing overflows. The way to deal with this problem is by throttling the data stream to
reduce queue sizes and processing load. A well-implemented throttle must handle data inefficiency
gracefully. The data flow analysis and simulations allow us to make some observations about throttling.
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2.6.1 Instantaneous data rate

The L1 Trigger stages must deal with data rate fluctuations. The L1 Trigger stages will be designed to
handle the average processing capacity calculated plus a safety margin. The buffers or queues will provide
the temporary storage to alow the processors to deal with high data rate fluctuations. The current
simulation of about 5000 events (see Figure XX below) shows for a typical queue maximum-to-average
ratio size of 7 or 8 times. This value is not exaggeratedly large but may increase for longer simulations.

The data set used for the current data flow simulations does not consider many of the spurious effects that
can increment the instantaneous data rate such us Pixel Detector failures and oscillations, etc.
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2.6.2 Data Throttling

Every stage of the Pixel Readout and L1 Trigger must implement simple cut mechanisms to detect and
discard events that are not interesting for processing. The benefit is double if many of these spurious events
are also large or require along processing time. The system must keep record of occurrence of these events.
Eventually, these events must be available for diagnosis.

There will be no feedback signals indicating an upstream stage to throttle data. The stage needing the
throttle must be able to implement its own.

2.6.3 Data Throttling in the Pixel Preprocessor
A typical case of data loss (not necessarily due to high data rate) but causing the same effect is due to data

that arrives late to the TS ordering queues. These data must be discarded for processing. The datacan join a
gueue of rejected or |eftover event pieces. Their occurrence can be reported through the PTSM.
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The Pixel Preprocessor could be able to implement data cuts based on high pixel count, large pixel groups,
number of tracks per event, etc.

2.6.4 Data Throttling in the Segment Tracker

The processing time in the Segment Tracker is proportional to the number of Pixel Hits and the number of

matching point that make a segment. Large events are likely to take longer. The Segment Tracker must be
able to throttle events when queues are full.

2.6.5 Data Throttling in the Processor Farmlet
The Buffer Manager is responsible for data throttling in the Farmlet. Data throttling can be induced by two
factors, an increase in the input data rate or a decrease of the processing capacity of the Farmlet due to a

Processor failure. Thistopic will be analyzed in particular in a separate document.

3 Conclusions
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APENDIX |

(pixel front end model)

APENDIX I

(derivation of the “bulk” service equations)

APENDIX [11

(Data occupancy in the Pixel Detector)
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