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1 Dataflow analysisin the L1 Pixel Trigger Processor Farm

The architecture of the L1 Track and Vertex (T&V) issimplified by the fact that each event is processed
independently. There is neither time-correlation nor need of data sharing among the computing nodes. Each
processor works on the events it has been assigned to, without need of communicating or exchanging
information with other processors. Thereis not need for shared pools of memory either. In consequence,
the dataflow analysisis simplified. However, a critical issue in such a massive parallel processing systemis
reliability. It isimportant to study the dynamics of the dataflow when a computing node fails (i.e. a
processor or associated electronics). Another important issue is determining the optimum number of nodes
in the basic package that we have called the Farmlet. Even when the nodes work fairly independently, the
nodes on the same Farmlet can share resources and services. It is easy to demonstrate that incrementing the
number of processors per Farmlet is advantageous in terms of dataflow. Of course, this faces obvious
technological problem of board size and density. The number of processing nodesis likely to be between 4
and 8.

The L1 Trigger architecture shows that events of “Triplet Data’ are built by the L1 Trigger Switch. Every
Switch output is connected to a Farmlet input as shown in A centralized event buffer and
scheduler in the Farmlet (i.e the Buffer Manager), distributes events to the processing nodes.
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Figure 1

The following analysis uses as example a Farmlet with 4 Processing nodes. The data bandwidths in the
Farmlet were calculated in [1]. The event processing times used in the data flow analysis simulations were
taken from simulations of the L1 Track and Vertex algorithm using available hardware (e.g. Intel P3-M
1.13GHz).

The following humbers are used in the calculations:
Pixel Detector Output Bandwidth: 47.3 MB/s
Number of L1 Trigger Highways:. 8

Number of Processing Nodes per Farmlet: 4

A crude cost analysis shows that the cost of the L1 Trigger is driven by the cost of the processors and
associated circuitry more than the cost of the memory needed or the cost of the data links.



2 Input data characterization

Theinput data has segments of trajectories that represent “triplets’ of pixel hits. In fact each “triplet”
includes 6 points, corresponding to 3 bend-view and 3 non bend-view hits of consecutive Pixel Detector
stations. However, in the current analysis we follow the convention of representing a “triplet” by 2 entries;
one containing the 3 bend-view hits and a second one with the 3 non bend-view hits. Hence, the number of
“triplets’ doubles. The Triplet Data distribution is as shown in The average number of Tripletsis
88.9 three-hit triplets. If atriplet can be represented by 16 bytes, and average event is about 1.5KB.
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The 2500 event statistics shows that about 12.7% of the events are empty of triplets. If we only average
over non-empty events, the mean event size is 102 triplets/event.

2.1 The event execution time distribution
Figure 3shows the event execution time distribution on an Intel P3-M 1.13GHz. The average execution

timeis 90.91 us. The distribution is exponential with parameter p=1/average execution time, but it al'so has
few eventsin along tail.
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2.2 The Farmlet input distribution

It has been shown in [1] that the Triplet Data distribution is exponential. The occurrence of new eventsis
exponentially distributed. The event size distribution convolutes with the arrival distribution. The mean
event-interarrival time of the input distribution can be used as a design variable. In fact, the mean event-
interarrival time depends on the number of Farmlets or L1 Switch outputs enabled. The calculation of the
number of Farmlets based on dataflow issuesis one of the main results of the current analysis.

3 Elementary Dataflow Analysis

The simplest model for the Farmlet is the M/M/1 queue. We can model the Farmlet’s Buffer Manager
(BM) as such queue. Theinput to the BM isthe Triplet Dataand it is stored in an input buffer
(FIFO). The service distribution is composed by the sum of the individual service distribution of the
processors in the Farmlet. Since the sum of few Poisson streams is also Poisson, the queue can be modeled
as M/M/1. In fact, this reasoning works both ways. We can either think that the BM isan M/M/1 process
whose mean interarrival timeis A and mean service timeis N or we can define an M/M/1 process for the
individual computing nodes defining the mean interarrival time as A/N and the mean servicetimeas 1. N is
the number of computing nodes in the Farmlet. See

Ao =Ai/N
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The steady state distribution of the M/M/1 processis given by:



p, =p*p, where p,=1-p

p= Alu representsthe utilization of the processing node. For this simple processthe Idle Timeis equal to
Po or 1-p. The problem is that both the average queue size and the latency in processing an event (i.e. the
gueuing time) approach infinite as p approaches 1.
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For instance, a utilization of 90% of the server implies an average queuing time equal to 10 timesthe
average processing time. That is, 0.9 ms for the average processing time shown above. The average queue
size for 90% utilization is 9 events, which is about 13.5 KB for an average of 1.5KB/event.

The variance in the queue size is given by

_P

(L-p)

It meansthat if we want to operate the server at 90% utilization and be able to store 99.99% of the events
(U+40) we need to be able to store at least 47 events (i.e. 70KB, 0=9.487).

Variance_of _queue_size=

4  Processor Fallure Analysis

Thisisvery important topic to analyze because in a 2500 processing node system reliability isabig issue.
The current architecture is based on Farmlets with a fix number of nodes per Farmlet. If a node fails, the
Buffer Manager in that Farmlet can reroute the buffered events to the nodes still working until the failing
node comes back to operation or the whole Farmlet is replaced. It is obvious that to keep the Farmlet in a
stable state the utilization factor p after the failure must be smaller than 1. Here, we define stability as the
ability of the system to keep operating at full capacity, keeping the event queue away from overflowing and
event execution times finite In other words,

D, = N-1
AF N

1)

N
N _ 1 IOBF = IOBF <
where N is the number of processing nodes in the Farmlet. Equation (1) tells us that if we want to have a
high utilization of the processing Farm before afailure and be able to keep the Farm stable after anode's
failure, we must increase the number of processing nodes to distribute the workload of the failing node
among more processors. Increasing the number of processing nodes per Farmlet lowers the cost per node of
shared resources in the Farm such as PTSM network, Buffer Manager, and 1/Os; but there are some hard
limitations to it. The data /O and Buffer Manager’ s bandwidths increase linearly with the number of
processors. Implementing larges Buffer Managers is more complicated and may increase the cost. Large



PC board sizes are usually not recommended for many reasons. The Farm’s reliability decreases with the
number of processing nodes.

4.1 Node Fallures

There are several modules in the Farm whose failure will cause the entire Farm to fail. If the failureis
permanent (e.g. a hardware failure) the Farm must be switched off and replaced. On the other hand, the
failure of asingle node in a Farm may be tolerated at least for a short period of time. A failure can be
considered transitory (or recoverable) as opposed to permanent (or along time failure) if the failuretimeis
short or the processing node can be restarted in a short time compared to the system’ s dynamics. Section @
analyzed Farm stability after permanent failures. However, many processing node failures can be
recoverable (e.g. software runtime failures). The following section analyzes the transient behavior of a
Farm after anode’ s failure and the possibility of maintaining stability when the node’sfailureis
recoverable.

4.2 Transent Analysis

The M/M/1 transient analysisis far more complicated than the one made for the equilibrium point. In the
equilibrium analysis we get rid of the time variable, in the transient analysis we must work with the full
differential -difference eguations given by

% =—(A+ )P () + AP, (1) + 1P, (1) k>1 (23)
dF;t(t)‘ AR, () + Ry (t) k=0 o)

To solve this set of equations analytically, the easiest way is to resort to transform methods. Since we have
acontinuous variable (i.e. time) and a discrete variable (i.e. queue state probability k) we need to use the
Laplace transform and the Z-transform respectively. Applying both to equation 2a and using 2b to reduce
the number of unknowns we obtain

P (2,9 = 2" - ud-2)P; () ‘)
' sz—(1-2)(u - A2)

where P, (S) isthe Laplace transform of the distribution of the idle state Po. P, (S) can be determined
using the property of analyticity of the transformations. The solution to equation (3) is

P.(t) =™ o021, (at) + p“" V2 u (@) + (- p)p" D e @) | @

j=k+i+2

Wherep:% , a=2up"?

(X/Z) k+2m «

> —1 isthe modified Bessel function of the 1¥ kind (Figure 6).
o (k+m)tm

and |, (X) = Z
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Figure 6

Ecuation (4) isill suit for calculation using numerical methods. It not only multipliesincreasing and
decreasing exponentials but an infinite sum of them. Instead, for the present analysis | have chosen to
follow the Orthogonal Least-Squared Approximation method suggested by Bolot [REF].

4.3 Orthogona L east-Squared Approximations to the Transient Analysis of
the M/M/1 queue

Equation (4) represents the instantaneous state probability distribution of the M/M/1 system. That isa
whole distribution for every instant of time. However, we are more interested in how the average queue
size evolves with time rather than the instantaneous val ue. We define the transient mean queue size as

Q) :ij Poj(t)' It is obvious that the mean queue size for t o must be Q(0) = p/(1— p) as defined
=0

in Section
It can be shown that Q(t) is monotonically increasing with exponential behavior. The Orthogonal Least-
Squared Approximation (OLS) uses the following model

n
g.()=a,+> ae™ b >0
i=1
to approximate Q(t). The measure of approximation isthe L2 norm

(@) -,®) =} 1o® - g, (0 dt

Of course, we can get rid of the square root and minimize the square of the L2 norm with respect to the &i

and bi coefficients. In any case, thisis not an easy task, which becomes harder as we raise the order of our
approximation model.

A first order model is quite simple and can be expressed in closed form. Let the model be

q,(t) = G(l— e‘bﬁ) where q = ﬁ



then, minimizing L2(Q(t) — g, (t)) = j:\Q(t) —qlt-e™ lz &t
weget b = 1(1- p)*(1+0.2539p).

b1 isthe reciprocal of the time-constant of the exponential function, which is a better demonstrator and will

1 1
beused lateron. Let T =— = (5)

b, u(l-p)*@1L+0.25390)

Thefirst order approximation works quite well for small p but it is not so accurate for p closer to 1.
ﬂ shows the real Q(t) and the 1% and 2™ order approximations for p=0.9.

M/M/1, 1st order approximation and 2nd order approximation dynamics
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The second order approximation uses the model

q,(t) =g +ae™ -(q+a)e™ where b >0b,>0

The minimization procedure gets more cumbersome and the optimal coefficients must be found by
numerical methods. For instance for £=0.9, ai=-4.401, b1=0.0572, and b2=0.0058 . MShows

that g2(t) approaches Q(t) very closely even for high 0. The approximation errors can, also, be calculated
numerically.

The beauty of the OLS analysisisits simplicity, and the fact that we can characterize the M/M/1 dynamics
with very simple parameters. It is customary to characterize asignal’s exponential behavior by itstime
constant (also called relaxation parameter). The 1% order approximation model’ s time constant is expressed



by Equation (5) as afunction of pand L. MShows the Time Constant T as afunction of U (i.e. the
processor’ s average service time), parameterized by 0.

Time Constant of the 1st order OLS model
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Figure 8a

The 2™ order model has two time constants one for each exponential

Time Constant 11 of the 2st order OLS model Time Constant 12 of the 1st order OLS model
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Figure 9b,c

As both plots show, the model’ s dynamics speeds up with £/ That is, faster processors or alarger number
of them per Farmlet will lower the time constants of the exponential s and the system approaches faster to

its steady state. Secondly, it can be observed that higher 0 “slow down” the system’s dynamics. Of course,
the price to pay for this slower dynamicsis alarger average queue size but this should not be an issuein

our case because we are only talking about Kbytes. On the other hand, 0, which is adesign parameter, will
be chosen based on the allowed Farmlet’s “I1dle Time”, which is the expensive commodity, and not based
on memory buffer size. Indeed, the memory buffer sizeis a dependent variable.

The 1% and 2™ order approximation time constants allow us to calculate how much time we allow to restore
the failed processor in the Farmlet as a function of how much excess buffering and processing latency we
can afford. Furthermore, as we increase 0, the system can enter quickly into the unstable mode and all new
events will be queued up, forcing the Buffer Manager to start throttling out data.



4.4 Simulations of the M/M/1 transient behavior

The simulation of the transient M/M/1 shows the behavior of the buffer queue and the processing nodes.
Theinput data to the transient M/M/1 simulation comes from Geant simulations of the BTeV's detector.
The raw pixel data has been run through a Pixel Processor and Segment Tracker simulator, which finds the
Triplet Data as defined in Section E] Please, see reference [1] for details. The simulation of the transient
M/M/1 does not include the entire Track and Vertex finding code. Instead, the processing time values
corresponding to each event were taken from other tests where the Track and Vertex code was actually run
on hardware [1].

The first simulation shows the turn-on of the Farmlet. The Farmlet has 4 processing nodes. The event’s

execution time pdf is as shown in m which has a mean of 90.91/& As said in Section 2, the input
datarate is a design parameter. The L1 Trigger can control the mean event-interarrival time to a Farmlet by
controlling the number of Farmlets hooked to the L1 Switch outputs. In the current simulations we set this

value to avalue that provides the desired 0. Figure XXX shows the evolution of the Buffer Manager’s
queue for ©=0.688.

(to be complete)
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