�������������������������

DMA Processor (DMAP)

	The DMA processor manages the queues and structures needed to allow multiple transfers to multiple destinations for multiple threads. In normal operation, a processor simply stores a transfer descriptor to the DMAP at a location that corresponds to one of 4032 possible destination nodes. The DMAP adds the descriptor to a linked list of transfers that are pending for that destination. When a channel to that destination is available, the DMAP will do all of the pending transfers.

Queue Structure

������

Thread Structure

����

Transfer Structure

�������

	Data structures are kept in a local SRAM. The SRAM has a 20ns cycle time and is shared with a general purpose integer processor that is intended to take care of more complex tasks like disk I/O.

Queueing:

����������������

	There are 4096 queues, one for each of 4032 destination nodes and one for each of 64 local slots. They are accessed as a 2-dimensional array of queue structures (QueS). For each slot, there is a que of pending destination nodes and for each node, there is a queue of pending transfers. Queues are implemented as FIFO singly-linked lists.

Implementation of Queing on a cycle by cycle basis

0	if (FREE==NULL) return error;				! Out of XferS space

	Q= QueS[Node];							! Get QueS

1	if (invalid(Q.permit)) return error;				! Invalid permission

	FREE->[0:7]=[RemoteA | Size | Flags]; ACK;		! Get word from CPU

	send Q.Slot to arbiter						! Begin arbitration

2	FREE->[8:15]=[LocalA | NULL |Thread]; ACK;	! Get word from CPU

3	QueS[Node].TAIL = FREE;					! Insert into list

	if (Q.TAIL==NULL) QueS[Node].HEAD = FREE;	! If empty, set HEAD

if (Q.TAIL != NULL)							! If not empty

4	 Q.TAIL->Link = FREE;						! Insert into list

else										! else add to slot que

4	Q= QueS[Slot]							! Get slot que

5	QueS[Slot].TAIL= &QueS[Node]				! Add node to list

	if (Q.TAIL==0) QueS[Slot].HEAD= &QueS[Node]	! If empty fix head

6	if (Q.TAIL !=0) Q.TAIL -> Slink = &QueS[Node]	! If not, fix list

endif

7	FREE= NextFREE;							! Update FREE list

	NextFREE= FREE->Link;					! for next time

	When a CPU writes an transfer structure (XferS), the DMAP checks the destination node’s access permission (see Permissions) and then uses the TAIL pointer to add the XferS to the end of the node’s list. Space for the new XferS is taken from a linked list of FREE XferS which is initialized on startup. If no other transfers were pending for that node, it is added to the queue for its slot number.

	As the XferS is written into memory, its destination slot number is sent to the bus controller which can begin arbitrating for that slot.

 De-Queueing:

De-Que flow

Receive Slot number from arbiter.

Take Node number from Slot queue. Begin path arbitration.

If path arbitration fails, put Node at the end of Slot queue and exit.

For each XferS in Node queue:

{	Send header and set up DMA address pointer and counter.

	Do transfer.

	Increment XferS.Thread -> #Transfers.

	If transfer good, put XferS on FREE queue and get next XferS.

	else

	{	put status in XferS.Flags.

		put XferS on ERROR queue.

		Increment XferS.Thread -> #Errors.

}	}

Remove Node from Slot queue.

if Slot queue is empty, remove slot from arbiter’s pending table.

	When a slot becomes free and has a transfer pending, the arbiter sends the Slot number to the DMAP which prepares to transfer data. The DMAP removes a destination Node from the Slot’s que and begins doing all pending transfers to that Node. The DMAP does a DMA block transfer for each pending XferS. If the transfer is successful, the XferS is returned to the FREE list and its thread’s transfer count is decremented. If the count becomes zero, a message is sent to the owner of the thread. If an error occurs, then the status is written into the XferS’s Flags field, the XferS is placed on an Error queue, and the thread’s error count is incremented. When the XferS que is empty, the Node is removed from the Slot que. If the Slot que is empty, a message is sent to the BSB controller to tell it not to arbitrate for that slot.

Permissions

	Simple access control can be implemented using a single bit for each CPU. If that bit is on, the transfer is permitted. Alternatively, we could have a 2-level or 3-level permission heirarchy with simple memory address bounds for each level. For example, at level 1, only user data space is available. At level 2, system data and program space is available. At level 3, system-protected data is available. This would require the DMAP to check Local_Address and Remote_Address for each transfer. A separate memory page is used for each level, so access permission can be enforced using the CPU’s memory management (if available).

Data

Address

DMA

Processor

1M

SRAM

128Kx64

64

64

Local

Bus

Backplane

Bus

Data

Address

Shared

System

Bus

Bus

Controller

+

Arbiter

Integer

CPU

(LR33000)

Slot #

SLink

HEAD

TAIL

Permit

16 bits

Transfers

Owner

Errors

16 bits

32 bits

Remote Addr

FLAGS Addr

Size

Local Addr

Thread

Link

XferS

Link

XferS

Link

XferS

Link

XferS

Link

XferS

Link

SLOT

HEAD

TAIL

NODE

HEAD

TAIL

Slink

NODE

HEAD

TAIL

Slink

