June 30, 1995

To:	Jon Streets

From:	Ed Barsotti

CC:	Ruth Pordes

	Don Walsh

	John Anderson

	Ted Zmuda

Subj:	Commands (Input Parameters) Needed Immediately On 13th Floor DART Test Stand

The following is a document written by John Anderson regarding the above subject. It lacks a list of commands (input parameters) for testing:

Trigger Holdoff signals from Sources

BAF signals from the DDD

WAIT signals from Sources (and the DDD?)

Data headers

Increased stability in the DDDMBX software is assumed. This document also lacks much about logging which is the next very important capability we need.

Ted Zmuda in the day to day person with whom you should be working during debugging of your code. Obviously, John and I will throw our two cents in as well from time to time. John, for sure, knows the system and module features better than Ted or myself.

Finally, we arenÕt perfect for sure. We most likely forgot something in the following document. Significant interaction with you is the only way to get this job done how we need it ... and when we need it. We very much appreciate your efforts, Jon.

�

DART Data Acquisition System

13th Floor DART Test Stand

Software Specification

John Anderson

June 27, 1995

Version 0.1

Document # ESE-DART-950621

DRAFT DOCUMENT

�

Table Of Contents

� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc329158252 � PAGEREF _Toc329158252 �1��

2. Description of TS13 Software Architecture	� GOTOBUTTON _Toc329158253 � PAGEREF _Toc329158253 �1��

2.1. Client-Server Model	� GOTOBUTTON _Toc329158254 � PAGEREF _Toc329158254 �1��

2.2. Single Entry Point for Local or Remote Testing	� GOTOBUTTON _Toc329158255 � PAGEREF _Toc329158255 �1��

2.3. Configuration Information	� GOTOBUTTON _Toc329158256 � PAGEREF _Toc329158256 �1��

2.3.1. Data Sources	� GOTOBUTTON _Toc329158257 � PAGEREF _Toc329158257 �2��

2.3.2. Data Destinations	� GOTOBUTTON _Toc329158258 � PAGEREF _Toc329158258 �2��

2.3.3. Trigger System	� GOTOBUTTON _Toc329158259 � PAGEREF _Toc329158259 �3��

2.3.4. Data Comparison Options	� GOTOBUTTON _Toc329158260 � PAGEREF _Toc329158260 �3��

3. Functions of Server Programs	� GOTOBUTTON _Toc329158261 � PAGEREF _Toc329158261 �3��

3.1. FASTBUS Data Server	� GOTOBUTTON _Toc329158262 � PAGEREF _Toc329158262 �3��

3.2. CAMAC DYC+ Data Server	� GOTOBUTTON _Toc329158263 � PAGEREF _Toc329158263 �4��

3.3. CAMAC CRABS Data Server	� GOTOBUTTON _Toc329158264 � PAGEREF _Toc329158264 �4��

3.4. CAMAC Trigger Server	� GOTOBUTTON _Toc329158265 � PAGEREF _Toc329158265 �4��

3.5. VME Data Server	� GOTOBUTTON _Toc329158266 � PAGEREF _Toc329158266 �4��

4. General Look And Feel Of User Interface	� GOTOBUTTON _Toc329158267 � PAGEREF _Toc329158267 �4��

4.1. Remote Graphical Interface Client	� GOTOBUTTON _Toc329158268 � PAGEREF _Toc329158268 �4��

4.2. Local Text Interface Client	� GOTOBUTTON _Toc329158269 � PAGEREF _Toc329158269 �5��

��Introduction

	This document specifies the software environment for DART system testing on, to be used at the test stand on the 13th floor of Wilson Hall. This software is intended to replace the software currently used which is spread across PC and VxWorks platforms, and to provide necessary testing facilities which are not present in the current suite.

	The current set of stand-alone programs will be replaced by a client-server model which provides an integrated set of utilities for system testing that can at a later date be easily transformed in to a useful set of field diagnostic tools. In this client-server model, the core program resides on the VME bus processor, with the FASTBUS processor (the FSCC) and CAMAC logic both subservient to the VME processor. Users may directly access a local client process for local testing, or invoke a remote client process over the network.

Description of TS13 Software Architecture

	The software for the 13th floor test stand (TS13) must provide a simple set of tools which allow engineers and technicians the ability to test for long-term module stability, integration of multiple modules in to a system and cable length effects. What this software need not do is provide detailed module-level tests and repair services; TS13 tests are based upon the assumption that every device in the 13th floor stand has already been given a clean bill of health by other module-level test software, and that every device present is known to operate within its established parameters when tested in relative isolation. System tests to be performed on the 13th floor are aimed at guaranteeing that the individual modules work together, as a system, over reasonable variations in cable length, number of cable loads, temperature and humidity.

Client-Server Model

	To provide the necessary functionality, a client-server set of programs is required. Servers are necessary in the FASTBUS and CAMAC crates to provide remote procedure calls to initialize data patterns, event identification and trigger information prior to testing data patterns received in the central VME crate. A client program in the VME processor is used to request specific actions of the FASTBUS and CAMAC servers in response to user input.

Single Entry Point for Local or Remote Testing

	Users of TS13 software will need to access the program either locally or via remote network hookups. To this end, the client in the VME processor must also be able to act as a server to support remote access from TK/TCL shells running on Unix machines. A simple way to implement this is to provide a local ‘client’ which generates identical remote procedure calls which are, in fact, handled locally by the VME server. Thus, the VME server code is independent of whether the commands are being typed in at a terminal or sent over the network.

Configuration Information

	13th floor tests require significant information about the system in order to be run. This data must be stored, in ASCII format, in a configuration file such that anyone with a text editor may define or modify test configurations. However, the user interface for the final system must provide a graphical user interface which allows graphic entry and editing of all configuration data.

Data Sources

	Each Data Source device (e.g. FSCC, DYC or CRABS) has multiple parameters which define how the test software will initialize, set up data and run the Data Source, as listed here:

Type of Data Source (FSCC, DYC or CRABS)

Address and methodology to communicate with Data Source (e.g. IP address, CAMAC branch address)

DART Data Link Readout Protocol (Permit chain topology) - ‘first’, ‘middle’ or ‘last’

Type of Data Pattern to put in to associated memory module

Alternating pattern between 0x00000000 and 0xFFFFFFFF

Alternating pattern between 0xAAAAAAAA and 0x55555555

Walking ones starting with 0x00000001

Walking zeroes starting with 0x11111110

Fixed pattern efined by the person performing the test (e.g., from data file or interactively)

Random data (from user-defined seed or real-time clock of computer)

Length of data pattern to put in to associated memory module

Address and methodology to communicate with memory module (e.g. FASTBUS address, CAMAC address, internal FSCC Data FIFO).

Permit Link position of module in DART Data Link (e.g. 1st, 2nd, 3rd, 4th, etc.)

Each of these fields must be easily identifiable to the user, and the range of legal values for each field must be instantly available. Comments in lines should be allowed.

Data Destinations

	The second section of the configuration file must specify the parameters of any and all Data Destinations present in the system:

Type of destination (DC2 or CRABS)

Address and methodology by which the Destination is read out/controlled

DART Data Link Address of destination module

DART Data Link Broadcast Mask of destination module

Data Link Addressing mode of Destination (single address, broadcast, always enabled)

Size of memory within Destination, in 32-bit longwords

Offset, in 32-bit longwords, at which BAF is set

Depth of internal FIFOs at which WAIT is set

Address and methodology by which the Destination is read out (VME or CAMAC)

With a single or multiple DC-2/DM-115 receivers, which ones are enabled to receive data (data integrity checking must be done for all DC-2/DM-115 receivers, whether they are enabled to receive data or not).

Trigger System

	The third section of the configuration file must specify the parameters of the triggering system. Physically, there will be a cable from the Trigger System to all Data Sources carrying the Trigger Strobe and the Trigger ID. A series of individual wires will run from each Data Source and Data Destination to the Trigger System carrying BAF and Trigger Holdoff signals. The configuration file section pertaining to triggers must have the following information:

Number of triggers to generate (with 0 meaning ‘infinite loop’)

The rate, in Hz, of triggers

The pattern of Trigger ID’s which are to accompany the Trigger Strobes

A Trigger Holdoff Mask which defines which Trigger Holdoff and/or BAF signals are to be honored by the Trigger System

Addresses of all CAMAC modules used to build the Trigger System.

A specification document describing the CAMAC Trigger System in detail, including which modules are present and the correct initialization sequence for each, is being written by Bob Forster. The final form of this document may require additional fields in the Trigger System configuration.

Data Comparison Options

	This final section of the configuration file must control how the data which is received by the Data Destination(s) is analyzed. Various forms of checking must be enabled or disabled independently:

Length of total event per trigger

Length of total event as reported by Data Destination per trigger

Length of sub-event per Data Source

Length of sub-event as reported by Data Source per Data Source

Data Pattern within sub-event per Data Source

Correct address recognition by Data Destination

Whether to stop on errors or not

Filename to log all errors to

Functions of Server Programs

	Each of the server programs must be able to provide initialization of the readout controller, deterministic setup of the data pattern to send, and first-order ‘is it alive?’ diagnostics in response to client requests. The processing capability in the different crates varies, which requires some servers to actually reside in the VME processor. All server functions need be packaged such that a single command or mouse click provides complete initialization and setup of a given data server.

FASTBUS Data Server

	The FASTBUS Data Server must provide a single call which provides a guaranteed reset of the FASTBUS Smart Crate Controller, followed by an automated load of the selected test pattern in to the memory, which is then completed by leaving the FSCC ready to read out the data in response to triggers. The DART Data Link positional information must also be used to set the FSCC as ‘first’, ‘middle’ or ‘last’, and must also set the enable of the EOR driver in to the correct state. Errors in initialization must be reported to the user interface in such a manner that the user is informed which FSCC is in error, and what kind of error has occurred.

	Software must presuppose that the response of the user to any error return will be the removal and replacement of the FSCC.

	CAMAC DYC+ Data Server

	Akin to the FASTBUS Data Server, the CAMAC DYC+ Data Server must provide all necessary initialization and data transfer functions to allow testing of data patterns sent from the DYC module. The DYC gets its data by reading from a CRABS test module, which in this architecture plays the same role as the 1892 memory in the FASTBUS crate. Many functions of the DYC are set, not by software, but by hardware jumpers. All configuration data must be checked against the jumper status read back from the DYC, and any mismatches must result in messages to the user informing them which jumper is incorrectly set, and how to correct it. Upon confirmation from the user that the requested changes have been made, the status must be rechecked to verify correct operation.

CAMAC CRABS Data Server

	The CRABS module may also be set up as a Data Source. In this mode the CRABS is loaded with a data pattern as controlled by the configuration file, and the CRABS state machines are programmed to set the correct Data Link and Permit Link operational paramters. The CRABS Data Server must provide this initialization in a similar fashion to that provided for the FSCC.

CAMAC Trigger Server

	The CAMAC Trigger Server reads the trigger parameter section of the configuration file and sets up the CAMAC crate accordingly. Upon receipt of a ‘go’ from the user interface, triggers are sent from the Trigger System until the number of triggers requested have been sent. The Trigger Server must provide data in the log file whenever it senses any BAF or Trigger Holdoff signal. In addition, a Trigger Counter should be implemented within the Trigger System which allows verification of the number of triggers sent through the system under test. This Trigger Counter may be implemented by comparing the number of events seen by all Data Destinations to the number of Triggers programmed in to the Trigger System, but external hardware will be required in those cases where the Trigger ID pattern addresses Data Destinations that are not physically connected to the cable.

VME Data Server

	The VME Data Server must provide the initialization and readout of the Data Destination(s) in the test system. Data read out must be compared to the expected data in both pattern and length, and all errors must be logged to a file.

General Look And Feel Of User Interface

Remote Graphical Interface Client

	The GUI should provide a window which allows selection and setup of the test configuration via a series of drop-boxes. A list of Data Sources and a list of Data Destinations should be provided; each element of the lists should be a series of drop-box menus allowing selection of the various legal values for each element. In additon, a menu area need be provided in which technician name, date, and test comments (e.g. “Data Source #3 in environmental chamber”) may be placed. All the data in this window is sent to the log file, and most of it is used to form the configuration file.

	A second GUI window should be provided for any status or error messages. In addition to placing them on the screen, all errors and messages must be copied to the log file. This second window also needs buttons for ‘stop’, ‘go’, and the like.

Local Text Interface Client

	The text interface client must use a simple ‘pick the number’ menu system where the numbers should be like this:

	0: Exit program

Edit configuration data (which leads to a second screen)

View log file

Enter specific test data (e.g. name, date, comments..)

Run test

	Option 1, Edit Configuration Data, should lead to a second series of screens which allows the user to define Data Sources, Data Destinations, Trigger System and Comparison Options. A directory of existent configuration files need be provided such that the user may take an existent configuration, edit it, and save under a new name.

�PAGE �

�PAGE �2�

		

TS13 Software Specification	� TIME �2:55 PM�	� DATE \l �6/30/95�

�

� PAGE �i�	

�PAGE �6�

		

� EMBED Designer ���

