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Data Flow Analysis and
Simulation of the Pixel
Processor and Segment
Tracker
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Modeling and simulation procedure
❚ Modeling:

❙ Queuing Models are stochastic processes.
❙ Model inputs are probability distribution functions (pdf).
❙ Queues are modeled by one or more differential-difference equations which

describe the queue’s dynamic behavior.
❘ The differential-difference equations describe a continuos time, discrete state

process.
❘ The state of the process concentrate all we need to know from it to predict its

future dynamics. All queuing models in the current analysis are Markov.

❙ The dynamic system is solved for the equilibrium point and parameters of
interest obtained from there.

❚ Simulation:
❙ System modules are really implemented in code.
❙ Function processing and timing are as close as possible to the final

implementation.
❙ Simulation inputs come from detector simulations.
❙ Parameters of interest are observed and compared to the ones obtained

from models.
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Pixel Front End Highways

❚ The Pixel Data Concentrators “highway”
the data.

❚ The Pixel Preprocessors process one
highway of one Half Pixel Plane.

❚ The Segment Tracker process the output
of six Pixel Processors (i.e. a Half Station
Triplet).

Pixel Data
Combiner

(8 highways)
Segment
Tracker

1 highway, ~1Gb/s

1 highway, ~1Gb/s

7 highways from each Data
Combiner going to other Pixel
Preprocessors and *Segment
Trackers

Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)

1 highway, ~1Gb/s

1 highway, ~1Gb/s

1 highway, ~1Gb/s

1 highway, ~1Gb/s

Pixel Front End

Pixel Detector

Pixel Preprocessor

Pixel Preprocessor

Pixel Preprocessor

Pixel Preprocessor

Pixel Preprocessor

Pixel Preprocessor

Trigger domainPixel domain



11/9/01 Gustavo Cancelo 4

Pixel Front End Highways (2)

❚ Benefits of highways
❙ Make the highway average

distribution fairly uniform
❘ All Pixel Preprocessors

process an equal amount
of data on average

❙ The Pixel Preprocessors
and Segment Trackers can
process bigger portions of
the Pixel Detector

❘ The average inter-arrival
time grows by a factor
equal to the number of
highways

❙ We have one more degree of freedom in the equation of bandwidth
and computational power required in the Pixel Preprocessors and
Segment Trackers
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The Simulation Input data file (1)
❚ The Pixel data was generated with BTeVgeant using the

following parameters:
❙ Pixel size: 50 x 400 microns,
❙ Chip size: 22 columns, 128 rows
❙ Magnetic field: 1.6T
❙ Threshold: 2000 e-
❙ Total No of Bunch Crossings (BCO): 745
❙ Luminosity: 2* (4 interactions per BCO on average)
❙ No of stations simulated: 3, corresponding to the central Triplet

of the Pixel Detector (i.e. stations 15, 16, and 17). Each Station
is double-sided with one bend-view plane and one non-bend-
view plane.
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The Simulation Input data file (2)
❚ Some file statistics

❙ Total N° of Hits (6 planes): 260,855
❙ Avg. No of tracks per BCO (1 plane): 25.14
❙ Avg. No hits per BCO (1 plane): 58.35
❙ Avg. No of hits generated by a track crossing a single sided

plane: 2.32

Mean~30

The input bandwidth into
the L1 Trigger is about
1Gb/s per Highway per
Half Plane.
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The Simulation Input data file (3)

Bend views

Non bend views

Bend view half planes are larger than non bend view half planes
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Pixel Preprocessor and Segment Tracker (PP&ST)

From Pixel Front-end (Fibers most likely)

Pixel
Preprocessor
& Segment

Tracker

Time Stamp expansion.

Event ordered by Time Stamp

Level 1 buffers

Pixel cluster finder & x-y
coordinates translator

Control &
Monitor
Interface

Data branches
out to neighbor

Segment
Trackers

Segment Tracker (BB33)

Makes segments
using n-1, n, n+1

pixel data.

to/from
station n+1

To Track & Vertex farm switch

Time Stamp expansion.

Time Stamp Ordering

Level 1 buffers

Pixel cluster finder & x-y
coordinates translator

PTSM
(Control &
Monitor)
Interface

Optical Receiver module.
Half Plane Pixel
Processor & L1
buffer (HP N)

Segment
Preprocessor

Interconnection

Segment
Preprocessor

Interconnection

to/from
station n-1

Data branches
out to neighbor

Segment
Trackers

NOTE: Functional
modules and
dataflow only shown
for 1 Half Plane of
the PP&ST. The
other 5 HP are alike.

❚ The PP&ST block
diagram is only for
data flow analysis
purpose and may
not be exhaustive.

❚ Some Pixel
Processors and a
Segment Tracker
can, probably, be
designed on the
same board.

❚ Pixel Preprocessors
must branch their
outputs to
neighbor Segment
Trackers.
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Queuing model of the Pixel Preprocessor
Front-end data

…

x-y Translator and Grouping Buffer

Segment Tracker

Input Serializer

Optical Link Input Buffer

TS Ordering Buffer

Half Station
N+1

HS N
Half Station N-1

❚ The PP&ST must be as close as
possible to 100% efficient.

❚ The PP&ST is very time constrained.
Buffers are used to equalize data
rate fluctuations and diminish
processor dead times.

❚ The data analysis is done by
modeling the PP&ST processes and
buffers as stochastic processes.

❚ Probability distributions are
obtained whenever possible
otherwise the 1st and 2nd moments
are calculated.

❚ The variables to estimate are:
❙ Queue sizes.
❙ Data queuing and service times.
❙ Channel utilization factors.
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The Optical Link Input queue (1)
❚ The Input Link Buffer queue is fed by the Optical Receiver electronics. A single

optical channel has a maximum bandwidth of about 2 Gb/s. This is equivalent to
250Mby/s or 125 Mega-16bit words/s, which is close to the maximum frequency
that a current FPGA can handle.

❚ Since the processing time is deterministic, the mean Input Link Buffer output
rate, µ, is constant and its variance is 0. If µ is greater that the maximum input
bandwidth of the optical channel (125 Mw/s), the Input Link Buffer size needed
is just 1 word deep.

❚ If µ is not greater than the maximum input bandwidth , it must be greater than
the average input bandwidth of the optical channel λ to avoid instability. In this
case the buffer behaves as a M/D/1 queue. The value of λ is directly
proportional to the clock frequency of the input receiver and the Input Link
Buffer’s utilization factor.

❚ In the later case, the average queue size can be calculated by:

( ) ( ) µ
λρ

ρ
ρ

ρ
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The arrivals at the receiver queue are exponentially distributed with λ=0.26
hits/clock and µ=0.5 hits/clock.

( ) 82.0=NE q
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The Optical Link Input queue (2)

Exponential Pixel Hit
arrival distribution at
the receiver’s queue.

Note: Pixel data is already
scrambled and delayed by the Pixel
Detector readout

Receiver queue size
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The TS-ordering queues (1)
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Using Little’s formula:

State diagram

TS- ordering queue model:

❚ The number of queues in the TS
ordering process follows a M/D/∞

❚ The service time  µ is constant and
programmable (e.g. µ=159 BCOs)

❚ λ: queue birth rate

❚ µk = kµ : queue death rate
❚ λ=0.1125 events/BCO for 4int/BCO.
❚ Tλ = 1/λ = 8.88 BCOs for 4int/BCO.
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❚ The simulation of about
750 BCOs shows a result
near to predicted. The
number of TS queues
open increases linearly at
the beginning and
stabilizes at around 18
queues. If we discard the
transitory (the first 200
BCOs) the average
number of queues from
simulation is 18.38.

The TS-ordering queues (2)
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The TS-ordering queues (3)
We can calculate the conditional probability distribution function of queue occupancies given
that there are n queues and the total sum of data words in the queues is m. The selection
of data in the queues can be modeled as a multinomial distribution:
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The TS-ordering queues (4)
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Equation (2) is still conditioned by a fixed number of queues in the system. However, it
let us study the distribution of data in the queues for a certain number of key values. For
instance we can let n be the average number of queues or some upper bound.

What equation (2) shows is that for a given n the distribution of M1(t)…Mn(t) are
independent Poisson processes with data rate λt/n. It is also known that as well as the
interarrival times in a Poisson Process are exponentially distributed, the k-iterated
interarrival of an event in (1) follows a k-stage Earlang distribution. In our case the
distribution is conditioned for n fixed.

(2)
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The TS-ordering queues (5)
We can further simplify the job if we are only interested in the average total number of
words in all the TS-ordering queues. The average number of hits in the TS-ordering
queues can be calculated using the average number of TS-queues and the average
number of hits per event.

( )
µ
λρ

ρ
ρ =
−

= whereNE q 1

241124.0__ == rateinputhitλ

BCOclkxtimequeuingisticDeter

queuesorderingNoTSAvg

/14__min

___=µ

993966.0=ρ

( ) hitsNE q 165
1

=
−

=
ρ

ρ

The simulation of about 750 BCOs shows an average
number of words of 202.8 after the transitory

242587.0=µ
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The TS-ordering queues (6)

Distribution of TS spread
in the data

Inefficiency in the TS-
ordering queues

Inefficiency is due to data arriving to the TS-ordering queues after the queue
has been closed and dispatched to the XYPC input queue

In the previous model the TS-ordering time-out was fixed at 159 BCOs. We can let  the
time-out be a parameter and study the data inefficiency based on the time-out value.
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The x-y pixel cluster (XYPC) queue
❚ Queuing model : M/M/1 with “bulk” arrivals

❙ The x-y buffer customers are data bulks of variable size.
❙ These queues are stored in the x-y buffer in one clock cycle.
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Let gi = Prob[bulk size is i], then
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The equilibrium equations for the
bulk arrival system are:
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The bulk M/M/1 queue size in equilibrium suffers a “modulation” effect caused by the
changing size of the events (bulks). This modulation is reflected in the discrete convolution
shown in equation (*). As we know, discrete convolutions are much easily handled in the z-
transformed plane because they turn into the product of the z-transforms. The z-transform
of the probability distribution is:
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The x-y pixel cluster (XYPC) queue (2)
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The utilization factor ρ=1-po can be obtained from P(1)=1: µ
λρ )1('G=

This result is not surprising because G’(1) is the average bulk size, hence λ G’(1) is
the average arrival rate and 1/µ is the average service rate.

The average queue size can be directly calculated from (**) using the method of
moments.
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After some algebra, Of course, this equation depends on the gk
distribution.

If we assume that gk follows a Poisson distribution:

However, the hit distribution does not look Poisson.
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using λ=0.0083, µ=0.1072, α=25, E(N)=0.103
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Modeling gi using a Rayleigh distribution

The Rayleigh distribution is a continuous pdf. Its
Fourier transform can be calculated as
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Then expected number of queues in the
bulk M/M/1 process is:

The x-y pixel cluster (XYPC) queue (3)
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The x-y pixel cluster (XYPC) queue (4)
A 750 BCO simulation shows that the XYPC queue is
empty most of the time and peeks suddenly every time
a bulk fills it up. Since the bulk interdeparture time is
fairly small compared to the bulk interarrival time, the
queue returns to 0 quickly most of the time

Half Pixel Plane σ̂ E(N)

N-1 bend 31.15 4.02
N-1 non bend 21.64 1.94
N bend 31.74 4.18
N non bend 23.50 2.29
N+1 bend 31.87 4.21
N+1 non bend 21.97 2.0

Parameter fit and mean queue size
table:
The second column of the table
shows the estimated parameter σ
for the input data distribution of
each half plane. The third column
shows the average queue size.

Note: N is plane 16. One of the central planes of the
Pixel Detector
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The Segment Tracker Architecture

Long
doublets

Triplets

N+1 Short
doublets

N Short
doublets

N-1 Short
doublets

MUX

Station N
Bend

Station N-1
Bend

Station N+1
BendLong doublet

projections

Triplets
projection

Station N-1
nonbend

Station N
nonbend

Triplets
projection

Station N+1
nonbend

Triplets
projection

Short doublet
outputs

BB33
outputs

❚ A Segment Tracker Triplet = Three
neighbor stations

❙ The Segment Tracker simulator
process data from 6 Pixel Half-
Planes

❚ Segments are found by doing a
Right-to-Left and Left-to-Right scan

❚ 14 queues and buffers.
❚ 6 processing modules
❚ Simulations being performed in

VHDL and Matlab.

Station 15

Station 16

Station 17

Station 15

Station 16

Station 17

Bend view

Nonbend view

12 half Pixel
planes at 12
different Z
locations.
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Segment Tracker Processing Modules
❚ A Processing module receives two asynchronous data

streams.
❚ The processing module’s first stage is a buffer manager

which synchronizes the data inputs by BCO.
❚ The BB33 pipelining is organized by BCO:

❙ Two processing modules always work on two different BCOs.

❚ The sequence of synchronized events out of the buffer
manager is itself a Poisson process.

Processing module I

Buffer Manager

λ1 λ2

Poisson sequence of events

Processing
module I

Processing
module II

λ1 λ2

λ3 λ4
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Segment Tracker Processing Modules (2)

--- N-1 bend
--- N bend

N-1 bend and N bend plane queue sizes
The mean of queued events in the
Long Doublet process is:
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We can estimate the average number
of hits in the N-1 bend and N bend
queues by multiplying the result in
(1) by the average event size

(1)

( ) ( ) ( ) 02.11538.0*82.20* === REEENE qvq

The average queue sizes calculated by
the simulations are:
N-1 bend: 13.57
N bend: 11.64

Queue size Mean and σ Calculated Simulated
Queue Mean σ Mean σ
N-1 bend 11.02 ? 13.5796 8.8559
N-1 non bend ? ? 11.6466 9.0579
N bend 11.75 ? 15.9897 8.0108
N non bend ? ? 12.1828 9.2420
N+1 bend ? ? 14.8655 9.6172
N+1 non bend ? ? 12.9621 9.9339
N triplet projection bend ? ? 2.4667 5.0369
N-1 projection non bend ? ? 0.1315 0.6177
N projection non bend ? ? 0.0259 0.2845
N+1 projection non bend ? ? 0.0259 0.2845

Note: N is plane 16. One of the central planes of the
Pixel Detector
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Segment Tracker Processing Modules (3)
Analysis of the BB33 queues as a “bulk” service process:
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The equilibrium equations for the bulk arrival system are:

gi = Prob[bulk size is i], then
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Solution for fixed bulk size is The mean queue size is
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Segment Tracker Processing Modules (4)
Latency and processing times:

Pixel Preprocessor Processing Distribution Avg. Processing Time

Receiver interface deterministic 2 clock/hit

TS-ordering
(queue)

deterministic 159 BCOs (4452 clocks)

TS-ordering (hits) exponential 18.8 clocks/hit

X-Y translation &
grouping

Rayleigh 1+Nohits/group=3.2clk/hit

Segment Tracker Processing Distribution Avg. Processing Time
Long Doublet Rayleigh:

1clk+AvgNoQuerys/BCO*
(2+AvgNomatches/query)

Triplet Rayleigh:
1clk+AvgNoQuerys/BCO*
(2+AvgNomatches/query)

Short Doublets Rayleigh:
1clk+AvgNoQuerys/BCO*
(2+AvgNomatches/query)

We define latency in a specific stage of the Pixel Preprocessor
and Segment Tracker modules as the time between the arrival
of the first hit of an event and the time when the processed
event departs from that stage

Latency:
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Summary
❚ What have we learned?

❙ The models and simulations show good consistency
❙ The queuing models reveal strategies to improve the system

architecture, for instance
❘ Adding highways to the Pixel Front-ends

• Make the highway average distribution fairly uniform
• The Pixel Preprocessors and Segment Trackers can process bigger portions

of the Pixel Detector
• We have one more degree of freedom in the bandwidth and computational

power required in the Pixel Preprocessors and Segment Trackers

❘ Some processing modules in the BB33 algorithm are very similar
❘ Some processing modules in the BB33 algorithm are underutilized

• A hardware/firmware realization of the BB33 could implement several
underutilized processing modules into a more general one, saving silicon

❘ A buffer manager simplifies the processing functions in the BB33
❘ An BCO-based event stream out of the BB33 processing modules helps

to keep queue sizes low.
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Summary (2)
❚ What have we learned?

❙ More on modeling benefits
❘ The queuing models allow us to predict new output parameters based

on changes in the input parameters whenever the model distributions
remain the same.

❙ Simulation benefits
❘ Models are hardly perfect, simulations provide a closer approach to

reality
❘ Simulations are based on models. The input data can be adapted to

different configuration

❚ Analysis results
❙ Queue sizes and communication channel bandwidths are within

reasonable margins. Once we approach the design stage, and a full
VHDL code has been generated, we can refine some of the
parameters shown in the modeling and simulation to optimize the
design.
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Summary (3)
❚ Any problems?

❙ A significant point shown by the data analysis is the latency created
by the need to reorder the Pixel data because the asynchronous
nature of the Pixel Detector readout scrambles it.

❚ Future work
❙ Finish the last part of the BB33 algorithm (with help from Erik and

Mike W.)
❙ Complete VHDL code design and simulation of the BB33 algorithm
❙ Complete VHDL code design and simulation of the Pixel

Preprocessor algorithm
❙ Study other algorithms?
❙ Large scale simulations (PC farm)?
❙ Study pixel clustering across the columns of the Pixel chip
❙ Study hardware/software implications of using Pixel hit analog

information


