
Level 1 Pixel Trigger Data Flow Analysis

BTeV Document 00??
19 September 2001

Gustavo Cancelo

Table of Contents

1 Some System definitions... 1
1.1 Introduction .. 1
1.2 The Pixel Detector structure.. 1
1.3 The Input data file: ... 2

1.3.1 Some file statistics ... 2
1.3.2 Front-end bandwidth .. 3

1.4 Pixel Preprocessor and Segment Tracker ... 3
1.5 The Pixel Front end .. 4

2 Data flow analysis in the Pixel Preprocessor and Segment Tracker .. 5
2.1 The Pixel Preprocessor Architecture.. 5
2.2 The Pixel Preprocessor queuing analysis and simulation.. 6

2.2.2 The TS-ordering queues ... 8
2.2.2.1 Time Stamp distribution and inefficiency in the TS-ordering queues11

2.3 The Segment Tracker Architecture ...17
2.4 Analysis and simulations of the BB33 dataflow..18

2.4.1 Analysis of the BB33 queues as events from the buffer manager ..18
2.4.2 Analysis of the BB33 queues as events from the buffer manager ..20
2.4.3 Latency and Processing Times...23

3 Conclusions..23

Disclaimer:
This document is still in preliminary stage. Some sections are incomplete or
need more work. Many calculations and simulation results depend on input
calculations, which are also preliminary. Use with care.

�����������������	��
 ����
�����
����

__

G.C 1

Pixel Trigger Queuing Analysis and Behavioral Simulations

1 Some System definitions

1.1 Introduction

The following document summarizes the results obtained by modeling and simulating part of the Level 1
Pixel Trigger Processor for BTeV. The portion modeled and simulated corresponds to the Trigger section
that process data from a Pixel Detector Triplet. A Pixel Detector Triplet is depicted in Figure 2.

The Level 1 Pixel Trigger architecture has been described elsewhere [ref]. In the current analysis it is
assumed that the Level 1 Pixel Trigger Processor is subdivided in a number of parallel branches called
highways (see Figure 3). The mapping of the Pixel data onto the highways is based on the data’s Time Stamp
(TS). For instance, if the number of highways is N, highway1 will receive data with Time Stamps
1,N+1,2N+1,…, highway2 will receive 2,N+2,2N+2,… and so forth. It is assumed that data acquired at any
TS is uncorrelated with other TS, hence can be processed independently.

1.2 The Pixel Detector structure

The data flow analysis and simulations make extensive use of Pixel Simulation Files. These files are Geant
simulations of the BTeV detector [ref Penny]. The particular file use for the Trigger data flow simulations
provides information of 3 complete Pixel Stations (N°: 15, 16, and 17). The stations are laid out as shown in
Figure 2.

Figure 1 Pixel Detector Triplet

A Pixel Station is composed of two Half Pixel Stations. Each Half Station has one half of a bend view
detector side and one half of a non-bend view detector side mounted on the same mechanical substrate. They
make a Pixel Half Station. This two half detector planes, the bend and the non bend views, are at about
0.57cm apart. The other Half Station that completes the Station is shifted about 2.25cm in Z. For instance, the
right side Half Station 15 is centered in Z between the left side Half Stations 15 and 16, and so forth. Right
and left halves of the Pixel Stations keep its separation through the Pixel Preprocessor and Segment Tracker
modules of the L1 Pixel Trigger Processor as detailed below.

X

Y Z

Station 15

Station 16

Station 17

Station 15

Station 16

Station 17

Bend view

Nonbend view

12 half Pixel
planes at 12
different Z
locations.

�����������������	��
 ����
�����
����

__

G.C 2

1.3 The Input data file:
The Pixel data was generated using the following parameters [ref]:
• Pixel size: 50 x 400 microns,
• Chip size: 22 columns, 128 rows
• Magnetic field: 1.6T
• Threshold: 2000 e-
• Total N° of Bunch Crossings (BCO): 745

• Luminosity: 2* scm 123210 −− (4 interactions per BCO on average)
• No of stations simulated: 3, corresponding to the central Triplet of the Pixel Detector (i.e. stations 15, 16,

and 17). Each Station is double-sided with one bend-view plane and one non-bend-view plane.

1.3.1 Some file statistics
Total N° of Hits (6 planes): 260,855
Avg. No of tracks per BCO (1 plane): 25.14
Avg. No hits per BCO (1 plane): 58.35
Avg. No of hits generated by a track crossing a single sided plane: 2.32

Figure 2 shows the hit distribution in one Half Plane.

Figure 2 Pixel hit distribution in one Half Plane

The Pixel Preprocessor and Segment Tracker process pixel data coming from a Half Station. The Pixel Data
goes from the Pixel Detector planes through the Data Combiner boards and into the L1 Trigger. The Pixel
Detector Data Combiners split the data into a number of highways. As a consequence, the average data rate
into the L1 Trigger Pixel Preprocessor equals the total average data rate of a Half Pixel plane divided by the
number of Highways in the system. In the following example we consider that the Pixel Front-ends will spit
the data into 8 highways. The Pixel Preprocessors process one Highway from one Half Plane. The Segment
Trackers process 6 Highways, one from each Half Pixel plane which make a Half Station Triplet (as shown
in Figure 3).

Mean~30

�����������������	��
 ����
�����
����

__

G.C 3

Figure 3 Pixel Front End Highways

1.3.2 Front-end bandwidth

The bandwidths are calculated using Half Planes and Half Stations as units. Based on the current file, the
Half Pixel Plane generates an average of about 30 hits per BCO. If a pixel hit is represented by a 4 byte
binary word, the total bandwidth per Half Plane is very close to 1Gbyte/s or 8Gb/s.

Since the Pixel Data Combiner boards split the data in 8 highways, the Pixel Preprocessor and Segment
Trackers receive 6 x 1Gb/s links from the 6 Half Plane which form a Half Station Triplet.

1.4 Pixel Preprocessor and Segment Tracker

The Pixel Preprocessor and Segment Tracker have a functional block diagram as shown in Figure 4. A
Segment Tracker process the data from a Triplet of two-sided Pixel Half-Stations. A Pixel Preprocessor
module process a single-sided Pixel Half Plane (i.e. the bend view or the non bend view). The block diagram
in Figure 4 shows 6 Pixel Preprocessor modules and 1 Segment Tracker. Even if the hardware can
accommodate 6 Pixel Preprocessors and 1 Segment Tracker it still needs to send Pixel Preprocessor data to
the neighboring Segment Tracker processors because there are up to 3 Segment Tracker processors using the
same Pixel Preprocessor data. The function of the Segment Preprocessor Interconnection is to distribute the
data to up to three Segment Tracker stations.

Pixel Data
Combiner

(8 highways) Segment
Tracker

Only 1 highway, ~1Gb/s

Only 1 highway, ~1Gb/s

7 highways from each Data
Combiner going to other Pixel
Preprocessors and *Segment
Trackers

Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)

Only 1 highway, ~1Gb/s

Only 1 highway, ~1Gb/s

Only 1 highway, ~1Gb/s

Only 1 highway, ~1Gb/s

Pixel Front End

Pixel Detector

Pixel Preprocessor

Pixel Preprocessor

Pixel Preprocessor

Pixel Preprocessor

Pixel Preprocessor

Pixel Preprocessor

�����������������	��
 ����
�����
����

__

G.C 4

Figure 4 Pixel Preprocessor and Segment Tracker functional block diagram

1.5 The Pixel Front end

The purpose of the current document is to report on the data flow in the Pixel Preprocessor and Segment
Tracker of L1 Pixel Trigger. However, some modeling and simulation of the Pixel Front End was necessary
to obtain realistic input data to the L1 Pixel Trigger. The Pixel simulation files provide a set of
chronologically organized events. A typical line of those files is:

BCO Plane No bend/nonbend Xcoord Ycoord Zcoord No pix hit

However, the data does not arrive chronologically sorted to the Pixel Trigger. The process of data readout in
the FPIX chips of the Pixel Detector and the process of data readout and highway sorting in the Pixel Data
Concentrator boards scramble the data.

A more realistic input data stream to the Pixel Trigger is needed in order to have better estimations of timing,
bandwidths, and queue sizes.

From Pixel Front-end (Fibers most likely)

Pixel
Preprocessor
& Segment

Tracker

Time Stamp expansion.

Event ordered by Time Stamp

Level 1 buffers

Pixel cluster finder & x-y
coordinates translator

Control &
Monitor
Interface

Data branches
out to neighbor

Segment
Trackers

Segment Tracker (BB33)

Makes segments
using n-1, n, n+1

pixel data.

to/from
station n+1

To Track & Vertex farm switch

Time Stamp expansion.

Event ordered by Time Stamp

Level 1 buffers

Pixel cluster finder & x-y
coordinates translator

PTSM
(Control &
Monitor)
Interface

Optical Receiver module.
Half Plane Pixel
Processor & L1
buffer (HP N)

Segment
Preprocessor

Interconnection

Segment
Preprocessor

Interconnection

to/from
station n-1

Data branches
out to neighbor

Segment
Trackers

NOTE: Functional
modules and
dataflow only shown
for 1 Half Plane of
the PP&ST. The
other 5 HP are alike.

�����������������	��
 ����
�����
����

__

G.C 5

The model used for the Pixel Front End is detailed in the Appendix. The Pixel Detector model considers the
fact that the hit density in the FPIX chips is not uniformly distributed across the Pixel Plane. The hit
distribution follows an inverse relation of the radial distance to the beam. As a consequence a FPIX chip
closer to the beam needs more serial communication channels to the Pixel Data Concentrators.

The Pixel Data Concentrator model includes a two-layer switch to route the data from about 84 inputs to 8
output highways.

2 Data flow analysis in the Pixel Preprocessor and Segment Tracker

The purpose of the data flow analysis in the L1 Trigger is to estimate the processing and storage
requirements, to create a timing and queuing map and to optimize hardware resources. The tools used in the
data flow analysis are two: queuing theory and behavioral simulations. The validity of the results depends on
the assumptions made in the modeling and the limitations of the input files used during simulation runs.
Some safety margins will be used in the design to account for all the unmodeled dynamics.

2.1 The Pixel Preprocessor Architecture

The Trigger Processor system must provide one trigger accept/reject per BCO, on average. This is achieved
by deeply pipelining the event processing. In order to optimize the throughput a number of buffers (queues)
are needed. The buffers smooth out data rate fluctuations and diminish processor’s idle times. An
advantageous feature of the Trigger Processor System is that the data events are independent (i.e.
uncorrelated) BCO wise. This characteristic facilitates the pipelining of the Trigger Processor by introducing
many processing units, which are allowed to work, asynchronously, on uncorrelated events. Using queues
between each two of those parallel processors allows pipelining by decoupling among data flows between
processors. Figure 5 shows the proposed queuing model of the Pixel Preprocessor.

The first queue in the Pixel Preprocessor is generated by Input Link Receivers. The serial input data from the
optical links are unserialized and placed in the Input Link buffers.

The Time Stamp (TS) field of the input data is expanded to the full length needed to match the maximum
trigger latency. Latency here is defined as the time it takes the Trigger System to make a decision on weather
to accept or reject an event. The Segment Tracker and the Level 1 Buffers need the data sorted by TS. Since
the data from the Pixel Detector Front Ends come TS unsorted, they are sorted by the TS-ordering module.
The TS-ordering module transfers the input data from the Input Link Buffers to separate queues where the
data is ordered by TS. The TS ordering queues are the second set of queues in the Pixel Preprocessor. The
number of open queues varies according to the TS distribution in the data stream.

The time each TS-ordering queue is open to receive data must be set deterministically based on data
distribution analysis. Since the input data is chronollogically unsorted and the event size is variable, the end-
of-event time is unknown. We could wait a “long time” and still not be sure that an event corresponding to a
certain TS is complete. Hence, the most logical approach is to make the departure time from the TS Ordering
queues deterministic with respect to its arrival time. The time every data queue must be kept open for
queuing (i.e. buffering input data of a certain TS) will affect the latency of the Trigger.

The thrird queue in the Pixel Preprocessor model (Figure 5) is the input to the Pixel cluster finder and x-y
coordinate translator (XYPC). This module reads data from an input buffer and writes grouped pixel clusters
into an output buffer. The input Pixel data is in row column form, that means the hits are represented by the
physical row and column address of the Pixel Detector chip which detected those hits. A single track may
generate more than one hit in the detector chip. The XYPC processor translate a whole group of row column
hits in a single x-y pair, where x and y are in metric units with respect to the origin of the coordinate system.
The XYPC reduces the event size by a factor proportional to the average pixel cluster size.

The fourth queue level (Figure 5) is the XYPC output buffer. It holds the x-y cluster data until is ready to be
processed by the Segment Tracker. The Segment Tracker needs x-y cluster data from the two neighbor
stations. The three queues generated by stations N-1, N, and N+1 are independent and work asynchronously.

�����������������	��
 ����
�����
����

__

G.C 6

Figure 5 Queuing model for data flow analysis

2.2 The Pixel Preprocessor queuing analysis and simulation

2.2.1 The Input Link Buffer

The Input Link Buffer queue is fed by the Optical Receiver electronics. The expected maximum input
bandwidth of the optical channel is 2 Gb/s. This is equivalent to 250Mby/s or 125 Mega-16bit words/s, which
is close to the maximum frequency that an FPGA can handle. However, the analysis of the Input simulation
file shows that the average bandwidth is about 1Gb/s Figure 3.

The processing time on the Input Link Buffer data is deterministic. The algorithm will do the following:
• Add an expansion field for the data TS.
• Create an output queue (unless it already exists) and place the data onto that queue based on the data’s

TS.

Algorithm:
if queue with data’s TS already exist

enqueue data in existing queue with its TS expanded
else

enqueue data in a new queue with its TS expanded
end

Since the processing time is deterministic, the mean Input Link Buffer output rate, µ, is constant and its
variance is 0. If µ is greater that the maximum input bandwidth of the optical channel (62.5 Mw/s), the Input
Link Buffer size needed is just 1 word deep. Note that µ must be, at least, greater than the average input
bandwidth of the optical channel λ to avoid queue instability. The value of λ is directly proportional

Front-end data

…

x-y Translator and Grouping Buffer (Bulk)

Segment Tracker

Segment Tracker Output

Optical Link Input Buffer (M/M/1)

TS Ordering Buffer (M/D/∞)

 Half Station
N+1

 HS N
 Half Station N-1

�����������������	��
 ����
�����
����

__

G.C 7

to the clock frequency of the input receiver and the Input Link Buffer’s utilization factor. In the later case,
the Input Link Buffer behaves as a M/D/1 queue. The average queue size can be calculated by

() () µ
λρ

ρ
ρ

ρ
ρ

=
−

−
−

= whereNE q 121

2

For the current simulation the input is distributed as shown in Figure 6.

Figure 6 Pixel Hit arrival distribution in the receiver’s queue

The arrivals at the receiver queue are exponentially distributed with λ=0.26 hits/clock and µ=0.5 hits/clock.
Hence,

0.53
5.0

26.0 ===
µ
λρ

The mean queue size becomes, () 82.0=NE q .

The simulations show that the Input Link Buffer queue does not exceed 1 word deep.

Figure 7 Receiver queue size

�����������������	��
 ����
�����
����

__

2.2.2 The TS-ordering queues

During the TS-ordering process queues are born and also die. A new queue is born when the TS event
ordering process receives data with a TS different to all the ones in the existing queues. A queue dies when
the data reception for that event is complete. As said above this time must be chosen deterministically. For
the current example this time will be equal to a complete revolution of the TS clock, that is ~21µs if we roll
over the TS counter at 159 BCOs, or 33.8µs if we roll over at 256 BCOs. This number is, probably, too
conservative and adds an unnecessary latency to the data flow. However, it represents a worst case bound.
The simulations show data inefficiency in the TS-ordering queue as function of the lifetime of the TS queue
as it is shown below.

The full queueing analysis of the TS event ordering is fairly complex because the process must not only
consider the queue birth-death distribution but, also, the size distribution of each individual queue. At least,
we want to find the first moments of a probability distribution function, which defines the existence of each
specific queue and its size. If we look at individual queues this is a non-stationary problem. However, some
simplifications can be made. We can define a new process looking only at the number of queues in the TS
event ordering system, regardless of their sizes. This new process is a well-defined birth-death Markov
chain. Each state represents the number of existing queues in the system (Figure 8). The process can be
modeled as a M/D/∞ process. The birth time of the queues are generated by random queue arrivals. The
interarrival times can be considered exponentially distributed. Queue deaths are caused by complete events
leaving the system. The interdeparture times are deterministic.

Figure 8 TS-ordering state transition model

When the TS ordering process receives data with a new TS, it opens a new queue immediately. That is, it
starts processing the incoming event without queueing it. The response time of the server increases linearly.
We can define:

λ: queue birth rate

µk = kµ : queue death rate

λ represents the rate at which new queues are generated. From simulations the total Pixel Detector Half
Station data rate is shown to be 0.9 events/BCO for 4int/BCO and 0.71 events/BCO for 2int/BCO. This rate
is reduced by the fact that the events are separated along K parallel highways based on TS. Considering
K=8 and that all TS are equally probable, the data rate in each branch (which is the interesting number
here) is:

λ=0.1125 events/BCO for a luminosity of 4int/BCO.
λ=0.0875 events/BCO for a luminosity of 2int/BCO.

In other words, the interarrival time Tλ (i.e the average time between two new queue arrivals) is:
Tλ = 1/λ = 8.88 BCOs for a luminosity of 4int/BCO.
Tλ =1/λ = 11.4 BCOs for a luminosity of 2int/BCO.

µ, the service rate, is deterministic and equal to the time we want to wait before considering that the event

is complete. In this example we set µ to 1/(159 BCOs) or 0.006289 BCO �
�
.

The M/D/∞ process is always stable. The probability distribution function of this system is given by

,...2,1,0
!

)(
== − ke

k
p

k

k
µλµλ

S0 S1 S2 . . .

λ λ λ

µ 2µ 3µ

�����������������	��
 ����
�����
����

__

G.C 9

The average number of queues in the system is given by:

() queuesNE q 89.17
006289.0

1125.0 ===
µ
λ

The average response time of the system to a job, using Little’s formula, is
()

BCOs
NE

T
q

159
1 ===
µλ

,

which is obvious because the system’s service time is deterministic.

The simulation of about 750 BCOs shows a similar result (Figure 9). The number of TS queues open
increases linearly at the beginning and stabilizes at around 18 queues. If we discard the transitory (the first
200 BCOs) the average number of queues from simulation is 18.38.

Figure 9 Simulation of the Number of TS queues

Before modeling the individual queues some data bounds can be calculated using the same system model.
If we take into account the average number of queues and the average event size we can expect an Avg.
Number of data words in all the queues of about:
Avg. N data = E(Nq) * Avg. event size = 17.89queues * 30 hits = 536 hits for a luminosity of 4int/BCO.
Avg. N data = E(Nq) * Avg. event size = 17.89queues * 20 hits = 357 hits for a luminosity of 2int/BCO.
This number is too pessimistic because if we take the averages as deterministic parameters (i.e. the system
has always 18 queues open and the event size is constant at 30hits/event) it implies that all the queues are at
maximum data capacity. The dynamics of the process tell us that this is not true and the total number of
words in the queues must be smaller than that.

The analysis of the individual queues can be performed as follow: We can calculate the conditional
probability distribution function of queue occupancies given that there are n queues and the total sum of
data words in the queues is m. The selection of data in the queues can be modeled as a generalized
binomial distribution:

() ppp
mmm

m
nqNmtMmtMmtMmtMP mmm

n
nn

n
111

21
2211 ...

!!...!

!
)(,)(|)(,...,)(,)(21======

�����������������	��
 ����
�����
����

__

G.C 10

where: 1
1

=∑
=

n

i
ip and mm

n

i
i =∑

=1

Since the input data-stream which generates the queues with individual TS is a Poisson process,

()
!

)(
)(

m

t
emtMP

m
t λλ−==

Then, we can take away the conditionality on the total number of words m

()
!

)(
....

!!...!

!
)(|,)(,...,)(,)(111

21
2211

21

m

t
eppp

mmm

m
nqNmtMmtMmtMP

m
tmmm

n
nn

n
λλ−=====

the last equation can be written as

() ∏
=

−=====
n

i i

itp
nn

m

tp m
enqNmtMmtMmtMP

i

i

1
2211 !

)(
)(|,)(,...,)(,)(

λλ (1)

since all the TS are equally probable nppp n /1...21 ====

() ∏
=

−=====
n

i i

nt
nn

m

nt m
enqNmtMmtMmtMP

i

1

)/(
2211 !

)/(
)(|,)(,...,)(,)(

λλ (2)

Equation (2) is still conditioned by a fixed number of queues in the system. However, it let us study the
distribution of data in the queues for a certain number of key values. For instance we can let n be the
average number of queues or some upper bound.

What equation (2) shows is that for a given n the distribution of M1(t)…Mn(t) are independent Poisson
processes with data rate λt/n. It is also known that as well as the interarrival times in a Poisson Process are
exponentially distributed, the k-iterated interarrival of an event in (1) follows a k-stage Earlang distribution.
In our case the distribution is conditioned for n fixed.

We can further simplify the job if we are only interested in the average total number of words in all the TS-
ordering queues. The average number of hits in the TS-ordering queues can be calculated using the average
number of TS-queues and the average number of hits per event.

()
µ
λρ

ρ
ρ =
−

= whereNE q 1

241124.0__ == rateinputhitλ

242587.0
/14__min

___ ==
BCOclkxtimequeuingisticDeter

queuesorderingNoTSAvgµ

993966.0=ρ

() hitsNE q 165
1

=
−

=
ρ

ρ

�����������������	��
 ����
�����
����

__

G.C 11

The simulation of about 750 BCOs shows an average number of words of 202.8 after the transitory.

Figure 10 Simulation of the Number of words in the TS queues

The number of simulated BCOs does not allow us to determine weather the function stabilizes at around
200 hits. A longer run is on request.

2.2.2.1 Time Stamp distribution and inefficiency in the TS-ordering queues

As said, the TS-ordering process opens one individual queue for each TS in the data stream. These queues
are open for data collection during a deterministic time. When that time is over, the queue is closed and
loaded into the XYPC input queue for data grouping. All data having a TS field corresponding to a queue
that is closed is lost and contributes to inefficiency in the Trigger. This problem can be solved by increasing
the time the queues are open for data collection, but that, of course, increases the latency of the Trigger. In
other words, it increases the time an event in the entire BTeV detector must be stored waiting for a trigger
accept or reject.

The TS scrambling in the data stream is generated by the scattered and asynchronous way in which Pixel
data is collected and routed to the Trigger system. The analysis of the Pixel Detector’s readout is outside
the scope of this document. However, we here present a crude simulation to illustrate the problem. In order
to study the Triger’s Pixel Preprocessor we have generated a simplified model of the Pixel Detector and
Data Concentrator’s readout. A detailed model can be found in the Apendix.

Figure 11a and b shows the distribution of TS spread (i.e. the distribution of times between the first and the
last event word with a certain TS).

�����������������	��
 ����
�����
����

__

G.C 12

Figure 11 Distribution of TS spread in the data

The Figure 12 a and b show the data inefficiency as a function of the time the TS-ordering queues are open
for data collection. The distributions in Figure 11 a and b correspond to “highwayed” data from 2 of the 6
planes that feed a Segment Tracker Triplet. It can be noticed that even when the amount of data generated
for each plane is similar, the distributions are quite different and the minimum time for data collection in
the TS-ordering queues varies a lot.

Figure 12 Inefficiency in the TS-ordering queues

2.2.3 The x-y pixel cluster (XYPC) queue

The x-y pixel cluster (XYPC) queue can be modeled as a “bulk” M/M/1 process. In such a process the data
arrives at the input queue in “bulks”. The x-y translator buffer receives “bulk” arrivals from the output of
the TS ordering process. Every time the TS ordering process closes a queue, that entire queue is placed in
the x-y translator buffer. This queue is of variable size and equal to the size of the event that generates it. In
other words, the x-y translator’s queue is composed by a number of queued customers, which are in turn of
variable length. This problem is a generalization of the system with an r-stage Earlangian service, in this
case using variable r. The bulk arrival state-transition diagram can be represented as in Figure 13.

�����������������	��
 ����
�����
����

__

G.C 13

Figure 13 XYPC state transition model

A good idea of the bulk size distribution g is given by the event size histogram provided by the simulations
(Figure 2).

Let gi = Prob[bulk size is i], then 1
1

=∑∞
=i ig

The equilibrium equations for the bulk arrival system are:

1)(
1

1
1 >+=+ ∑

−

=
−+ kgppp

k

i
ikikk λµµλ (1)

pp 10 µλ =

The numbers we are looking for are the size of the x-y translator queue and the average service time. The
solution of the equilibrium equations involves z-transform methods. The bulk M/M/1 queue size in
equilibrium suffers a “modulation” effect caused by the changing size of the events (bulks). This
modulation is reflected in the discrete convolution shown in equation (1). As we know, discrete
convolutions are much easily handled in the z-transformed plane because they turn into the product of the
z-transforms. The z-transform of the probability distribution is

)](1[)1(

)1)(1(
)(

zGzz

z
zP

−−−
−−=

λµ
ρµ

(2)

Here P(z) represents the z-transform of the probability distribution of the x-y transform queue size and G(z)
is the z-transform of the probability distribution of the bulk size. The utilization factor ρ is defined, as
usually, ρ=1-po. The value of ρ can, also, be obtained from (2) taking into account that P(1)=1.

Then,
µ

λρ)1(’G= . This result is not surprising because)1(’G is the average bulk size, hence)1(’Gλ is the

average arrival rate and 1/µ is the average service rate.

The average queue size can be directly calculated from (2) using the method of moments.

dz

zdPNE
z

)()(
1=

=

After some algebra, ())1(2

)1()1(2
)(

G

GG
NE

′−
′′+′

=
λµ

λλ
. Of course, this equation depends on the gk distribution.

If we assume that gk follows a Poisson distribution then

ezG z α)1()(−= , where α is the spread in the event size distribution.

ezG z αα)1()(−=′

ezG z αα)1(2)(−=′′

Then expected number of queues in the bulk M/M/1 process is

k-2 k-1 k

λg1

µ µ µµ

k+1 k+2

µ µ

λg2

λgi.
.
.

.

.

.

λgi

λg2

λg1

.

.

.

.

.

.

.

�����������������	��
 ����
�����
����

__

G.C 14

()λαµ
αλλα

−
+=

2

2
)(

2
NE . It can also be expressed in terms of ρ, ()ρ

ραρ
−
+=

12

2
)(NE

using λ=0.0083, µ=0.1072, α=25, E(N)=0.103

In fact, as it can be appreciated in Figure 2, the hit distribution is not Poisson. We can approach it much
better using a Rayleigh or a Landau distribution.

The Rayleigh distribution can be expressed as:

Figure 14 Rayleigh distribution

e
x

X
x

xf σ
σ

2

2

2
2

)(
−

=

The Rayleigh distribution is a continuous pdf. Its Fourier transform can be calculated as

∫∫
∞

∞−

∞

∞−

−−− == dxe
x

dxexfwF jwx
x

jwx e σ
σ

2

2

2
2

)()(

after solving this we get

e
w

jwwF 2

22

2
)(

σπσ
−

=

and its counterpart z-transform is (using e jwz =):

zzzG 2

2

)ln(
2

)(
σπσ

−
=

the n-iterated derivatives of G(z) are:



























−=′ 












+−)ln(

2
1

2
)(

2
1

2

2

zzG z σσπσ














−












−












+−=′′ 












+−

2
)ln(

2
11

2
)1(

2
)(

222
2

2

2

σσσσπσ zzG z

�����������������	��
 ����
�����
����

__

G.C 15

The z-transform derivatives calculated at z=1 are

2
)1(

πσ=′G

()σπσ 21
2

)1(+−=′′G

Then expected number of queues in the bulk M/M/1 process is

()











+

+−
=

2
2

1
22

2

)(

2

πλσµ

σµ
λσπ

µ
λσπ

NE

Using
µ

λρ)1(’G= , equation (4) can be written as

() ()
()ρ
σρ

−
−=

12

12
NE

The Raileygh distribution fits much better the data distribution of Figure 9. The parameter σ can be
calculated using Maximum Likelihood Estimation (MLE) over the data sample. MLE estimation is
straightforward using Matlab. Table 1shows the MLE values of σ and the mean queue size for the 6 Half
Pixel Planes in the current example,

Table 1

Half Pixel Plane σ̂ E(N)

N-1 bend 31.15 4.02
N-1 non bend 21.64 1.94
N bend 31.74 4.18
N non bend 23.50 2.29
N+1 bend 31.87 4.21
N+1 non bend 21.97 2.0

A 750 BCO simulation shows that the XYPC queue is empty half of the time and peeks suddenly every
time a bulk fills it up. Since the bulk interdeparture time is fairly smaller than the bulk interarrival time, the
queue shows to return to 0 most of the time. The BB33 input queue shows a similar behavior. Figures 15
and 16 show the simulation of the XYPC and BB33 input queues for plane N-1 non bend. The mean queue
sizes are,
x-y input queue: E(N)= 2.26
BB33 input queue: E(N)=2.83

�����������������	��
 ����
�����
����

__

G.C 16

Figure 15 XYPC queue size

Figure 16 BB33 Input queue size

�����������������	��
 ����
�����
����

__

G.C 17

2.3 The Segment Tracker Architecture

As said in section XX, the Segment Tracker finds 3-station long inner and outer triplets. The current
analysis is based on the proposed BB33 algorithm. A detailed description of the BB33 can be found in
[Ref1] [Ref2]. The Segment Tracker receives input from 6 Half Planes corresponding to the bend and non-
bend views of three consecutive stations in the Pixel Detector. There is a queue associated to each input to
store the incoming data. We have, also, defined other 7 internal queues for temporary data storage, which
allows pipelining through the processing modules.

Figure 17: The Segment Tracker Architecture

Each of the first five modules in the BB33 algorithm process entire events of data coming from two
sources. Here, we associate the word event with all the data generated by a particular section of the Pixel
Detector (i.e one Half Plane) during one BCO time. As shown in Figure 17, the pixel hits preprocessed by
the Pixel Preprocessor accumulate in the input queues of the BB33 processing modules. An event is
processed when the buffer manager of a processing module detects that one event in each of the two input
queues are complete. The buffer manager of each processing module synchronizes the data streams. The
buffer managers are not explicitly shown in the block diagram above but are the first function in each

Long
doublets

Triplets

N+1 Short
doublets

N Short
doublets

N-1 Short
doublets

MUX

Station N
Bend

Station N-1
Bend

Station N+1
BendLong doublet

projections

Triplets
projectionStation N-1

nonbend Station N
nonbendTriplets

projection

Station N+1
nonbend

Triplets
projection

Short doublet
outputs

BB33 outputs

�����������������	��
 ����
�����
����

__

G.C 18

processing module. Each processing module produces pixel doublets and projections as results, which are
used as input for the next processing module.

2.4 Analysis and simulations of the BB33 dataflow

2.4.1 Analysis of the BB33 queues as events from the buffer manager

The data flow of the BB33 algorithm can be analyzed in several ways. We can start with the simplest
analysis, disregarding the individual pixel hits that accumulate in the input queues and only looking at the
output of the buffer managers. As said, the buffer managers output a random sequence, which can be
represented by a Poisson process. The buffer managers store data in the two input queues that they control,
until they detect that a complete event is in the queue. At that time they issue a “complete event” primitive
that is used by the processing module to start the event processing. This “complete event” sequence can be
modeled by a Poisson process. The BB33 algorithm is seen as an open network of queues, where inputs are
Poisson. The simulation shows that the 5 data mean arrival rates and mean processing times are as specified
by the following table:

Table 2

Pixel Half Plane Event arrival rate (λi) (hits/clock) Mean Processing Tine (clocks)
Long Doublet 0.0089 39.34
Triplet 0. (not final results yet, need

double checking from Erik)
0.

N-1 short doublet 0. 0.
N short doublet 0. 0.
N+1 short doublet 0. 0.

This means that mean number of queued events in the Long Doublet process is

() 35.0538.0
1

===
−

=
µ
λρ

ρ
ρ

whereRE q

where ρ is the utilization factor.

We can estimate the average number of hits in the N-1 bend and N bend queues by multiplying the Average
event size to the result above.

() () () 02.11538.0*82.20* === REEENE qvq

Figure 18 shows a simulation run of the queue sizes of N-1 bend and N bend queues

Figure 18 BB33 queue sizes

--- N-1 bend
--- N bend

�����������������	��
 ����
�����
����

__

G.C 19

The average queue sizes out of the simulations are:
N-1 bend: 13.57
N bend: 11.64
These values are reasonable close to the ones calculated by using queueing analysis. I think a longer
simulation will get them closer to the calculated value. Some discrepancy may come from the fact that the
process is not 100% Poisson. The simulation shows that the distribution of event arrival times is not strictly
exponential, and has a bias.

Note that during the first 159 BCO the queues are empty. This is caused by the transitory in the TS-
ordering queues, which has a deterministic delay of 159 BCOs.

The analysis of the other queues is fairly similar. Figure 19 shows all the queue sizes

Figure 19: BB33 queue sizes

The average queue sizes are summarized in the following table

Table 3

Queue size Mean and σ Calculated Simulated
Queue Mean σ Mean σ
N-1 bend 11.02 ? 13.5796 8.8559
N-1 non bend ? ? 11.6466 9.0579
N bend 11.75 ? 15.9897 8.0108
N non bend ? ? 12.1828 9.2420
N+1 bend ? ? 14.8655 9.6172
N+1 non bend ? ? 12.9621 9.9339
N triplet projection bend ? ? 2.4667 5.0369
N-1 projection non bend ? ? 0.1315 0.6177
N projection non bend ? ? 0.0259 0.2845
N+1 projection non bend ? ? 0.0259 0.2845

The BB33 input queues during this simulation run show a high peek at about BCO 400. This is caused by 3
consecutive large events of about 25 tracks each. Since the utilization factor of the modules is low the
Segment Tracker recovers very quickly.

Four of the BB33 processing modules (i.e. the triplet and the 3 short doublet processors) perform a very
similar task to the Long Doublet processor. The main difference is that in each one of these four processing
modules, one of the queues is the output of a previous processing module in the BB33 algorithm. For

--- N-1 bend queue
--- N bend queue
--- N+1 bend queue
--- N-1 nonbend queue
--- N nonbend queue

--- N+1 nonbend queue
--- N triplet projection queue
--- N-1 nonbend projection queue
--- N nonbend projection queue
--- N+1 nonbend projection queue

�����������������	��
 ����
�����
����

__

G.C 20

instance the Triplet processor process data from two queues, the input of one of them is the output of the
Long Doublet processor. So we need to find out the pdf of this input. We can extend the analysis to the
Short Doublets as well. For that, we can take the processing modules in pairs. Each pair can be seen as a
network of queues as shown in Figure 20.

Figure 20 Network of queues

If the arrival and service distribution functions of the Processing module I are exponentially distributed
with parameters λ1 and µ1 respectively, it can be shown using the Laplace transform that the departure is
exponentially distributed with parameter λ1. This means that the input to the Processing module II is, also,
Poisson distributed with parameter λ1. This property can be applied to the Short Doublets as well. This is
the justification to why the input to the Triplet and Short Doublet processes can be seen as Poisson. If the
service distribution functions of those processes are exponential, then the queues are M/M/1 queues.

2.4.2 Analysis of the BB33 queues as a “bulk” service process

A more detailed analysis of the BB33 queues must look at the full dynamics of the number of hits in the
queues. The processes can be modeled as “bulk” service. In the “bulk” service process the input queue
receives single arrivals but allows “bulks” of variable size in the departure. The state transition diagram of
the “bulk” service process only allows “birth” type of transitions to a neighbor state on the right. However,
the “death” transitions (i.e. right to left) can be to non-neighboring states. As in the “bulk” arrival case we
must define

gi = Prob[bulk size is i], then 1
1

=∑∞
=i ig

gi has a “modulation” effect over the distribution of the queue size pi.

The equilibrium equations for the bulk arrival system are:

1)(
1

1 >+=+ ∑
∞

+=
−− kgppp

ki
kiikk µλµλ (*)

∑
∞

=
=

1
0

i
ii gpp µλ

Figure 21 Bulk service queuing model

Processing
module I

Processing
module II

λ1 µ1=λ2

k-2 k-1 k

λ

µg1

k+1 k+2

µg2

µgi

.

.

.

λ

.

.

.

.

µg1 µg1µg1µg1µg1

µg2

µgi

λ λλ

�����������������	��
 ����
�����
����

__

G.C 21

Using the Z Transform

∑
∞

=
=

1

)(
i

k
i ZpZP

equation (*) becomes

() ()() () 1
1 1

>+=+ ∑ ∑−
∞

=

∞

+=
− kgpZPPZP

k ki

k
kiio zz µλµλ (**)

the last term of equation (**) is a double summation. If we change variables in the inner summation

kijwheregp
k j

k
jkj z −=∑ ∑

∞

=

∞

=
+

1 1
µ

We can work it out swapping the summations and momentarily fixing j. Then, this last term becomes

() fixedjwherepzPggp
k

j

k

k
kkkj

k
jkj z

z
z =∑












−=∑

∞

= =

∞

=
+ ∑

1 01

µµ (***)

combining (**) and (***) the equilibrium equations become

() ()() () 1
1 1

>+=+ ∑ ∑−
∞

=

∞

+=
− kgpZPPZP

k ki

k
kiio zz µλµλ

()() fixedjZPZPZZP
j

k

k
kkko Zpg

Z
p =












−+=−+ ∑

=0

)()()(
µλµλ

Equation (****) can be solved for j=fixed by becomes analytically untractable if we try to solve for all j. j
represents the size of the bulk departing from state k after processing. A good estimation can be achieved
using the average bulk size and solving for a fixed j=Avg bulk size.

The solution to that is shown in the Appendix II. The final equation is,

zz
z

o

oZP
−

−
=

1

11
)(

We can obtain the distribution inverting the last equation

















−=

zz
p

o

k

o
k

11
1 , where Zo is obtained from equation (****).

pk is geometrically distributed. Its mean value is

()
11

1
2

1 −
=



















−
=

z
z

z
z

o
o

o

o

NE

�����������������	��
 ����
�����
����

__

G.C 22

The simulations show that the 6 data individual data streams are Poisson processes with rates as specified
by the following table

Table 4

Pixel Half Plane Queue arrival rate (λi) (hits/clock)
N-1 non bend 0.1072
N-1 bend 0.1014
N non bend 0.1116
N bend 0.1014
N+1 non bend 0.1133
N+1 bend 0.1023

The superposition of two independent Poisson processes is also a Poisson process with arrival rate equal to
the sum of the individual input rates. The combined arrival rate for stations N-1 bend and N bend at the
input of Long Doublet processing module is 0.2028 hits/clock.

(write results here)

�����������������	��
 ����
�����
����

__

G.C 23

2.4.3 Latency and Processing Times

In this section we analyze Processing Times in each stage of the Pixel Preprocessor and Segment Tracker.
The Processing Time of a piece of data or Service Distribution Time of a Processing module impacts the
queue sizes. The

Table 5

Pixel Preprocessor
Processing Distribution Average Processing Time

Receiver interface deterministic 2 clock/hit
TS-ordering (queue) deterministic 159 BCOs (4452 clocks!)
TS-ordering (hits) exponential 18.8 clocks/hit
X-Y translation & grouping Rayleigh 1+Nohits/group = 3.2 clk/hit

Segment Tracker
Processing Distribution Average Processing Time

Long Doublet Rayleigh:
1clk+AvgNoQuerys/BCO*(2+Avg
Nomatches/query)

29.17 clocks/event

Triplet Rayleigh:
1clk+AvgNoQuerys/BCO*(2+Avg
Nomatches/query)

Short Doublets Rayleigh:
1clk+AvgNoQuerys/BCO*(2+Avg
Nomatches/query)

We define latency in a specific stage of the Pixel Preprocessor and Segment Tracker modules as the time
between the arrival of the first hit of an event and the time when the event departs from that stage.

The latency in the Pixel Preprocessor and the Segment Tracker is dominated by the sorting time in the TS-
ordering queues (i.e 159 BCOs). Figure 22a shows the latency distribution.). Figure 22b is the same figure
but suppressing the latency in the TS-ordering queues.

Figure 22 Distribution of latency in the Pixel Processor and Segment Tracker

The mean latency times are 172.22 BCOs and 13.22 BCOs respectively, and the Standard Deviation is
4.27.

3 Conclusions

Data Bandwidths

Queue Sizes

Etc.

�����������������	��
 ����
�����
����

__

G.C 24

APENDIX I

(pixel front end model)

APENDIX II

(derivation of the “bulk” service equations)

