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Abstract 
The current paper studies how processor failures affect the 
dataflow of the Level 1 Trigger in the BTeV experiment 
proposed to run at Fermilab’s Tevatron. The failure analysis 
is crucial for a system with over 2500 processing nodes and 
a number of storage units and communication links of the 
same order of magnitude. The failure analysis is based on 
models of the L1 Trigger architecture and shows the 
dynamics of the architecture’s dataflow. The failure analysis 
provides insight in how system variables are affected by 
single component failures and provides key information to 
the implementation of error recovery strategies. The 
analysis includes both short term failures from which the 
system can be recovered quickly and long term failures 
which imply a more drastic error recovery strategy. The 
modeling results are supported by behavioral simulations of 
the L1 Trigger running BTeV’s Geant Montecarlo data. 
 
I. SUMMARY 
The BTeV experiment, proposed for running at Fermilab, 
includes a sophisticated Trigger system in three levels [1]. 
The Level 1 Trigger uses Pixel and Muon Detector data. 
Both the Pixel and the Muon triggers work fairly 
independent until the last stage where their outputs are 
combined by the Global Level 1 Trigger, as shown in Figure 
1. The Level 1 Trigger is a complex highly parallel event 
processor of the order of 2500 processing nodes. The 
Trigger�s downtime is required to be less than 5%. Hence, 
the system must be robust, fault tolerant and run even in the 
event of component failures. Futhermore, the Trigger�s 
performance must gracefully decrease in the occurrence of 
an increasing number of single component failures. The 
BTeV Trigger�s fault tolerance problem has originated an 
independent project in real time embedded systems (RTES) 
[2] to develop the appropriate hardware and software 
framework.  
 
  
 
 
 
  
  
 
  
 
  

Figure 1 

Figure 1 shows the L1 Trigger building blocks. The data 
preprocessors have two main functions, the Pixel 
Preprocessor and the Segment Tracker. The Pixel 
Preprocessors format and sort the raw data coming from the 
Pixel Detector. The Segment Trackers generate triplets of 
points that describe the beginning and the end of all tracks in 
each event. Each Pixel Preprocessor and Segment Tracker 
processes a small geographic portion of the pixel detector. 
The data generated every bunch crossing (BCO) of the 
accelerator is stamped with a distinctive temporal label 
called Time Stamp (TS). The Data Router or Switch routes 
all data that share a same Time Stamp to the same Track and 
Vertex processor. Each data event is assigned to a single 
processing node because trigger decisions are made on event 
by event basis. The Track and Vertex processors are grouped 
in larger units of hardware called Farmlets (Figure 2). 
Processors in a Farmlet share some resources such as data 
I/O path, main buffering and network connections and some 
interfaces. 

 
The Trigger�s architecture has been designed based on 
parallel computing models. A dataflow analysis through the 
models allowed us to optimize design parameters such as 
number of processors per Farmlet, processor workload, 
buffering, and latency. It has, also, been crucial to eliminate 
bottlenecks and compute link bandwidths.  
 
As said, a main concern in the trigger design is component 
and system failures. It is obvious that dataflow and failure 
analysis are intimately linked since failures will tend to 
break the system balance. The current document analyses the 
Level 1 Trigger Farmlet�s dataflow in the event of failures. 
The analysis of the Pixel Processor and Segment Tracker has 
been described in paper N29-7 at this conference.  
 
II. PROBLEM STATEMENT 
The Farmlet�s dataflow analysis was carried out resorting to 
statistical queuing models. All such models and results are 
supported by dataflow simulations.  
 
A steady state analysis of the Farmlet�s model reveals all the 
parameters mentioned above when the system works in its 
steady state. However, hardware or software failures 
unbalance the system�s load. This problem has been 
analyzed looking at the dynamics of the Farmlet�s queueing 
model. To avoid bottlenecks or data loss it is important to 
understand the time constants that dominate the transient 
system dynamics upon a failure. 
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Figure 2 

The input data flow to the Trigger processor is not time 
uniform. Hence the Trigger must allow for some idle 
capacity to be able to cope with the dataflow statistical 
fluctuations. It is crucial to keep the idle capacity as low as 
possible during normal operation. However, failures produce 
a relative increase in the net dataflow in a localized section 
of the architecture. If the increase is substantial or cannot be 
mitigated soon enough, it will result in system�s instability 
and data loss. This paper provides a stability analysis and 
reports on how different variables affect the dataflow. The 
dataflow dynamics allow us to classify failures as transitory 
(i.e. short term, recoverable) or permanent (i.e. not 
recoverable before the system reaches a new dataflow steady 
state). One of the important results of this analysis is the 
indication that the idle capacity needed to cope with 
permanent sporadic processor failures is too expensive. To 
address this problem the transitory behavior of the system 
upon failures has been analyzed. When a failure occurs, the 
data storage queues near the failure start increasing size, the 
processors near the failure increase their workload and some 
internal communication channels, also, see a steady increase 
in their bandwidth requirements. However, the dynamics of 
these processes may allow a fault recovery system. A key 
result of this analysis is the estimation of the time allowed 
for failure recovering without creating a significant effect on 
the system�s steady state. It is also of importance to 
understand which design variables can be used to control 
this time.  
 
The Trigger system models were implemented using a 
behavioral simulator. The simulations confirmed the model�s 
outputs. The importance of the simulation exercise resides in 
the ability of using input data that comes from Geant 
simulations of the BTeV detector. The Geant data is an 
accurate prediction of the real data that the Trigger will see 
at run time. The Geant data was used to test the Trigger and 
failure models at different luminosity levels of Fermilab�s 
Tevatron. 

III. FARMLET MODELS 
As shown in Figure 2 the main constituents in a Farmlet are 
the Buffer Manager (BM) and the processing nodes. The 

incoming data are stored into a queue from which the BM 
retrieves and assigns events to the processing nodes. The 
Track and Vertex algorithm running on a Pentium III-M at 
1.13GHz shows that the event service time is exponentially 
distributed with a mean equal to 90.91µs. The event 
interarrival time at the Farmlet�s input is a design variable 
constrained by the number of Farmlets connected at the 
output of the Switch (Figure 2). This number can be 
controlled to obtain the desired processor utilization, mean 
service time or input buffer size. In this context the event 
arrival-delivery at the input queue can be modeled as an 
M/M/1 queue. The event data (i.e. triplets) have a 
modulation effect on input queue size. The analysis of this 
problem can be found at [4]. 
Defining the input queue interarrival time as λ= λi and the 
queue service time as µ=sum(µo) the Bufer Manager�s input 
queue can be modeled as a M/M/1 queue (Figure 3).  

Figure 3 

The steady state distribution of the number of events in the 
queue is given by 
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and ρ =  λ/µ  represents the utilization of the processing 
nodes. The processor�s idle time is equal to po = 1-ρ. As it is 
well known, the average queue size and average queueing 
time of events approach infinite as the utilization goes to 1. 
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For instance, a utilization of 90% of the server implies an 
average queuing time equal to 10 times the average 
processing time. This adds a latency of 0.9ms to the event 
pipeline. The average queue size for 90% utilization is 9 
events, which represent about 13.5 KB for a typical average 
of 1.5KB/event. 
The variance in the queue size is given by  
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It means that if we want to operate the server at 90% 
utilization and be able to store 99.99% of the events (µ+4σ) 
we need to be able to store at least 47 events in the input 
queue of the buffer manager (Figure 2)(i.e. 70KB, σ=9.487). 
 
IV. PROCESSOR FAILURE ANALYSIS 
If a node fails, the Buffer Manager in the Farmlet can 
reroute the buffered events to the operating nodes until the 
failing node comes back to operation or the whole Farmlet is 
replaced. It is obvious that to keep the Farmlet in a stable 
state the utilization factor ρ after the failure must be smaller 
than 1. In other words, 
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where N is the number of processing nodes in the Farmlet. 
Equation (1) tells us that if we want to have a high 
utilization of the processing Farmlet before a failure and be 
able to keep the Farmlet stable after a node�s failure, we 
must increase the number of processing nodes to distribute 
the workload of the failing node among more processors. 
Increasing the number of processing nodes per Farmlet 
lowers the cost per node of shared resources in the Farmlet 
such as interface links, network, Buffer Manager, and I/Os; 
but there are some hard limitations to it. The data I/O and 
Buffer Manager�s bandwidths increase linearly with the 
number of processors. Implementing larger Buffer Managers 
is more complicated and may increase the cost. Large PC 
board sizes are usually not recommended for many reasons. 
The Farm�s reliability decreases with the number of 
processing nodes. 
 
There are modules in the Farmlet whose failure will cause 
the entire Farmlet to fail. If the failure is permanent (e.g. a 
hardware failure) the Farmlet must be switched off and 
replaced. On the other hand, the failure of a single node may 
be tolerated at least for a short period of time. A failure can 
be considered transitory (or recoverable) as opposed to 
permanent (or non-recoverable) when the processing node 
can be restarted in a short time compared to the system�s 
dynamics. The following section analyzes the transient 
behavior of a Farmlet after a node�s failure (e.g. software 
runtime failure) and the possibility of maintaining stability 
when the node�s failure is recoverable. 

V. TRANSIENT ANALYSIS 
The M/M/1 transient analysis is more complicated than the 
one made for the equilibrium point. In the equilibrium 
analysis we get rid of the time variable, in the transient 
analysis we must work with the full differential-difference 
equations of the M/M/1 model (Figure 3) given by [4] 
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To solve this set of equations analytically, the easiest way is 
to resort to transform methods. Since we have a continuous 
variable (i.e. time) and a discrete variable (i.e. queue state 
probability k) we need to use the Laplace transform and the 
Z-transform respectively. Applying both to equation 2a and 
using 2b to reduce the number of unknowns we obtain 
 

))(1(
)()1(

),(
*1

*

zzsz
sPzz

szP o
i

λµ
µ

−−−
−−

=
+

  (3) 

 

where )(* sPo is the Laplace transform of the distribution of 

the idle state po. )(* sPo can be determined using the 
property of analyticity of the transformations. The solution 
to equation (3) is 
 

(
)4()()1(

)()()(

2

2

1
2)1(2)()(




−+

++=

∑
∞

++=

−

++
−−

−
−+−

ikj
j

jk

ik
ik

ik
ikt

k

atI

atIatIetP

ρρρ

ρρµλ  

 

where 2/12, µρ
µ
λρ == a  

 

and 1
!)!(

)2()(
0

2

−≥
+

=∑
∞

=

+

k
mmk

xxI
m

mk

k  is the modified 

Bessel function of the 1st kind (4). 

Figure 3 

Equation (4) is ill suit for calculation using numerical 
methods. It not only multiplies increasing and decreasing 
exponentials but an infinite sum of them. Instead, for the 
present analysis we have chosen to follow the Orthogonal 
Least-Squared Approximation method suggested by Bolot 
[3].  

VI. OLS APPROXIMATION TO THE 
TRANSIENT ANALYSIS OF THE M/M/1 
QUEUE 
 
Equation (4) represents the instantaneous state probability 
distribution of the M/M/1 system. That is a whole 
distribution for every instant of time. However, we are more 
interested in how the average queue size evolves with time 
rather than its instantaneous value. We define the transient 
mean queue size as  
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It is obvious that the mean queue size for t→∞ must be 
)1()( ρρ −=∞Q as defined in Section III. 

It can be shown that Q(t) is monotonically increasing with 
exponential behavior [5]. The Orthogonal Least-Squared 
Approximation (OLS) uses the following model 
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to approximate Q(t). The measure of approximation is the 
L2 norm  
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Of course, we can eliminate the square root minimizing the 
square of the L2 norm with respect to the ai and bi 
coefficients. In any case, this is not an easy task, which 
becomes harder as we raise the order of our approximation 
model. 
 
A first order model is quite simple and can be expressed in 
closed form. Let the model be 
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then, minimizing  
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we get )2539.01()1( 2

1 ρρµ +−≈b . 
 
b1 is the reciprocal of the time-constant of the exponential 
function. The time constant τ is a better demonstrator of the 
system�s dynamics 
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The first order approximation works quite well for small ρ 
but it is not so accurate for ρ closer to 1. Figure 5 shows the 
real Q(t) and the 1st and 2nd order approximations for ρ=0.9. 

Figure 5 

The second order approximation uses the model  
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The minimization procedure gets more cumbersome and the 
optimal coefficients must be found by numerical methods. 

For instance for ρ=0.9, ai=-4.401, b1=0.0572µ ,and 
b2=0.0058µ . Figure 5 shows that q2(t) approaches Q(t) 
very closely even for high ρ. The approximation errors can, 
also, be calculated numerically. 
 
The beauty of the OLS analysis is its simplicity, and the fact 
that allow us to characterize the M/M/1 dynamics with very 
simple parameters. It is customary to characterize a signal�s 
exponential behavior by its time constant (also called 
relaxation parameter). The 1st order approximation model�s 
time constant is expressed by Equation (5) as a function of ρ 
and µ. Figure 6 shows the Time Constant τ as a function of 
µ (i.e. the processor�s average service time), parameterized 
by ρ. 
 

Figure 6a 

The 2nd order model has two time constants one for each 
exponential 
 

 

Figure 6b 



 

 

Figure 6c 

As both plots show, the model�s dynamics speeds up with µ. 
That is, faster processors or a larger number of them per 
Farmlet will lower the time constants of the exponentials and 
the system approaches faster to its steady state. Secondly, it 
can be observed that higher ρ �slow down� the system�s 
dynamics. Of course, the price to pay for this slower 
dynamics is a larger average queue size but this should not 
be an issue in our case because the average event size is 
small (~1.5 Kbytes). On the other hand, ρ, which is a design 
parameter, will be chosen based on the allowed Farmlet�s 
�idle time�, which is the expensive commodity, and not 
based on memory buffer size. Indeed, the memory buffer 
size is a dependent variable. 
 
The 1st and 2nd order approximation time constants allow us 
to calculate how much time we allow to restore the failed 
processor in the Farmlet as a function of how much excess 
buffering and processing latency we can afford. 
Furthermore, as we increase ρ, the system can enter quickly 
into the unstable mode and all new events will be queued up, 
forcing the Buffer Manager to start throttling out data. 

Figure 7 

 

A behavioral simulation of the Farmlet�s transient response 
with about 50 thousand events shows similar results (Figure 
7). The simulator models a Farmlet with four processors. At 
startup the input buffer is empty and the time constant 
measured is close to 3µs. One of the processors simulates a 
failure at 15ms and is restored at 43 ms. The time constant of 
the change of state is longer because the accumulated data 
smooth out the transition. 
 
Data Purging 
The L1 Trigger is a data-push architecture. There is not 
feedback mechanism between stages that can stop the 
dataflow. Hence, each stage must implement a way to cope 
with instantaneously high flow rates and eventually with 
overflows.  
 
The strategy implemented in the L1 Trigger avoids all buffer 
overflows using a technique that purges data when the 
buffers are close to overflow. This is a controlled way of 
handling data that cannot be processed. Those events can be 
reported to other trigger stages, including the TS number of 
the data that could not be processed. In this way, 
unprocessed data in L1 Trigger is not thrown away. Instead 
L1 Trigger reports to L2/3 that events with certain TS could 
not be processed and should be processed by L2/3. 
 
VII. CONCLUSIONS 
The analysis of the Farmlet�s dataflow models the dynamic 
behavior of the data as it goes though stages of processing. 
The study of the queue dynamics in an event of failure is 
critical in the Farmlet design. The transient analysis of the 
Farmlet behavior estimates the average time allowed to 
intent a processor recovery upon failure. This time is a 
function of the average queue size increase and average 
workload increase in the functioning processors. The queue 
dynamics� time constant allows us to design recovery 
techniques of temporary processor failures.  
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