

Failure Analysis in a highly parallel processor for L1 Triggering
G. Cancelo*, E. Gottschalk*, V. Pavlicek*, M. Wang*. J. Wu*

* Fermi National Accelerator Laboratory

Abstract
The current paper studies how processor failures affect the
dataflow of the Level 1 Trigger in the BTeV experiment
proposed to run at Fermilab’s Tevatron. The failure analysis
is crucial for a system with over 2500 processing nodes and
a number of storage units and communication links of the
same order of magnitude. The failure analysis is based on
models of the L1 Trigger architecture and shows the
dynamics of the architecture’s dataflow. The failure analysis
provides insight in how system variables are affected by
single component failures and provides key information to
the implementation of error recovery strategies. The
analysis includes both short term failures from which the
system can be recovered quickly and long term failures
which imply a more drastic error recovery strategy. The
modeling results are supported by behavioral simulations of
the L1 Trigger running BTeV’s Geant Montecarlo data.

I. SUMMARY
The BTeV experiment, proposed for running at Fermilab,
includes a sophisticated Trigger system in three levels [1].
The Level 1 Trigger uses Pixel and Muon Detector data.
Both the Pixel and the Muon triggers work fairly
independent until the last stage where their outputs are
combined by the Global Level 1 Trigger, as shown in Figure
1. The Level 1 Trigger is a complex highly parallel event
processor of the order of 2500 processing nodes. The
Trigger�s downtime is required to be less than 5%. Hence,
the system must be robust, fault tolerant and run even in the
event of component failures. Futhermore, the Trigger�s
performance must gracefully decrease in the occurrence of
an increasing number of single component failures. The
BTeV Trigger�s fault tolerance problem has originated an
independent project in real time embedded systems (RTES)
[2] to develop the appropriate hardware and software
framework.

Figure 1

Figure 1 shows the L1 Trigger building blocks. The data
preprocessors have two main functions, the Pixel
Preprocessor and the Segment Tracker. The Pixel
Preprocessors format and sort the raw data coming from the
Pixel Detector. The Segment Trackers generate triplets of
points that describe the beginning and the end of all tracks in
each event. Each Pixel Preprocessor and Segment Tracker
processes a small geographic portion of the pixel detector.
The data generated every bunch crossing (BCO) of the
accelerator is stamped with a distinctive temporal label
called Time Stamp (TS). The Data Router or Switch routes
all data that share a same Time Stamp to the same Track and
Vertex processor. Each data event is assigned to a single
processing node because trigger decisions are made on event
by event basis. The Track and Vertex processors are grouped
in larger units of hardware called Farmlets (Figure 2).
Processors in a Farmlet share some resources such as data
I/O path, main buffering and network connections and some
interfaces.

The Trigger�s architecture has been designed based on
parallel computing models. A dataflow analysis through the
models allowed us to optimize design parameters such as
number of processors per Farmlet, processor workload,
buffering, and latency. It has, also, been crucial to eliminate
bottlenecks and compute link bandwidths.

As said, a main concern in the trigger design is component
and system failures. It is obvious that dataflow and failure
analysis are intimately linked since failures will tend to
break the system balance. The current document analyses the
Level 1 Trigger Farmlet�s dataflow in the event of failures.
The analysis of the Pixel Processor and Segment Tracker has
been described in paper N29-7 at this conference.

II. PROBLEM STATEMENT
The Farmlet�s dataflow analysis was carried out resorting to
statistical queuing models. All such models and results are
supported by dataflow simulations.

A steady state analysis of the Farmlet�s model reveals all the
parameters mentioned above when the system works in its
steady state. However, hardware or software failures
unbalance the system�s load. This problem has been
analyzed looking at the dynamics of the Farmlet�s queueing
model. To avoid bottlenecks or data loss it is important to
understand the time constants that dominate the transient
system dynamics upon a failure.

Global
Level 1

Pixel
Pre-

processors

Data

Routers

Track and

Vertex
Processors

Detector

Muon
Pre-

processors

Data

Routers

Muon
Track

Processors
Detector

Level 2
Trigger

Pixel

Muon

Figure 2

The input data flow to the Trigger processor is not time
uniform. Hence the Trigger must allow for some idle
capacity to be able to cope with the dataflow statistical
fluctuations. It is crucial to keep the idle capacity as low as
possible during normal operation. However, failures produce
a relative increase in the net dataflow in a localized section
of the architecture. If the increase is substantial or cannot be
mitigated soon enough, it will result in system�s instability
and data loss. This paper provides a stability analysis and
reports on how different variables affect the dataflow. The
dataflow dynamics allow us to classify failures as transitory
(i.e. short term, recoverable) or permanent (i.e. not
recoverable before the system reaches a new dataflow steady
state). One of the important results of this analysis is the
indication that the idle capacity needed to cope with
permanent sporadic processor failures is too expensive. To
address this problem the transitory behavior of the system
upon failures has been analyzed. When a failure occurs, the
data storage queues near the failure start increasing size, the
processors near the failure increase their workload and some
internal communication channels, also, see a steady increase
in their bandwidth requirements. However, the dynamics of
these processes may allow a fault recovery system. A key
result of this analysis is the estimation of the time allowed
for failure recovering without creating a significant effect on
the system�s steady state. It is also of importance to
understand which design variables can be used to control
this time.

The Trigger system models were implemented using a
behavioral simulator. The simulations confirmed the model�s
outputs. The importance of the simulation exercise resides in
the ability of using input data that comes from Geant
simulations of the BTeV detector. The Geant data is an
accurate prediction of the real data that the Trigger will see
at run time. The Geant data was used to test the Trigger and
failure models at different luminosity levels of Fermilab�s
Tevatron.

III. FARMLET MODELS
As shown in Figure 2 the main constituents in a Farmlet are
the Buffer Manager (BM) and the processing nodes. The

incoming data are stored into a queue from which the BM
retrieves and assigns events to the processing nodes. The
Track and Vertex algorithm running on a Pentium III-M at
1.13GHz shows that the event service time is exponentially
distributed with a mean equal to 90.91µs. The event
interarrival time at the Farmlet�s input is a design variable
constrained by the number of Farmlets connected at the
output of the Switch (Figure 2). This number can be
controlled to obtain the desired processor utilization, mean
service time or input buffer size. In this context the event
arrival-delivery at the input queue can be modeled as an
M/M/1 queue. The event data (i.e. triplets) have a
modulation effect on input queue size. The analysis of this
problem can be found at [4].
Defining the input queue interarrival time as λ= λi and the
queue service time as µ=sum(µo) the Bufer Manager�s input
queue can be modeled as a M/M/1 queue (Figure 3).

Figure 3

The steady state distribution of the number of events in the
queue is given by

ρρ −== 1oo
k

k pwherepp ,
and ρ = λ/µ represents the utilization of the processing
nodes. The processor�s idle time is equal to po = 1-ρ. As it is
well known, the average queue size and average queueing
time of events approach infinite as the utilization goes to 1.

ρ
ρ
−

=
1

__ sizequeueAvg

ρ
µ

−
=

1
/1__ timequeuingAvg

For instance, a utilization of 90% of the server implies an
average queuing time equal to 10 times the average
processing time. This adds a latency of 0.9ms to the event
pipeline. The average queue size for 90% utilization is 9
events, which represent about 13.5 KB for a typical average
of 1.5KB/event.
The variance in the queue size is given by

()21

ρ
ρ

−
=sizequeueofVariance

It means that if we want to operate the server at 90%
utilization and be able to store 99.99% of the events (µ+4σ)
we need to be able to store at least 47 events in the input
queue of the buffer manager (Figure 2)(i.e. 70KB, σ=9.487).

IV. PROCESSOR FAILURE ANALYSIS
If a node fails, the Buffer Manager in the Farmlet can
reroute the buffered events to the operating nodes until the
failing node comes back to operation or the whole Farmlet is
replaced. It is obvious that to keep the Farmlet in a stable
state the utilization factor ρ after the failure must be smaller
than 1. In other words,

L1
Trigger
Switch

λi Buffer
Manager

λo = λi/N

λo = λi/N

λo = λi/N

λo = λi/N
Processor

Farmlet

S0

S1

Sn

Farmlet

Farmlet

Processor

Processor

Processor

λi

µo

µo

µo

µo

P0 p1 p2

λ λ λ

µ µ µ

N
N

N
N

BFBFAF
1

1
−<⇒

−
= ρρρ (1)

where N is the number of processing nodes in the Farmlet.
Equation (1) tells us that if we want to have a high
utilization of the processing Farmlet before a failure and be
able to keep the Farmlet stable after a node�s failure, we
must increase the number of processing nodes to distribute
the workload of the failing node among more processors.
Increasing the number of processing nodes per Farmlet
lowers the cost per node of shared resources in the Farmlet
such as interface links, network, Buffer Manager, and I/Os;
but there are some hard limitations to it. The data I/O and
Buffer Manager�s bandwidths increase linearly with the
number of processors. Implementing larger Buffer Managers
is more complicated and may increase the cost. Large PC
board sizes are usually not recommended for many reasons.
The Farm�s reliability decreases with the number of
processing nodes.

There are modules in the Farmlet whose failure will cause
the entire Farmlet to fail. If the failure is permanent (e.g. a
hardware failure) the Farmlet must be switched off and
replaced. On the other hand, the failure of a single node may
be tolerated at least for a short period of time. A failure can
be considered transitory (or recoverable) as opposed to
permanent (or non-recoverable) when the processing node
can be restarted in a short time compared to the system�s
dynamics. The following section analyzes the transient
behavior of a Farmlet after a node�s failure (e.g. software
runtime failure) and the possibility of maintaining stability
when the node�s failure is recoverable.

V. TRANSIENT ANALYSIS
The M/M/1 transient analysis is more complicated than the
one made for the equilibrium point. In the equilibrium
analysis we get rid of the time variable, in the transient
analysis we must work with the full differential-difference
equations of the M/M/1 model (Figure 3) given by [4]

() 1)()()(
)(

11 >+++−= +− ktPtPtP
dt

tdP
kkk

k µλµλ (2a)

0)()(
)(

1 =+−= ktPtP
dt

tdP
o

o µλ (2b)

To solve this set of equations analytically, the easiest way is
to resort to transform methods. Since we have a continuous
variable (i.e. time) and a discrete variable (i.e. queue state
probability k) we need to use the Laplace transform and the
Z-transform respectively. Applying both to equation 2a and
using 2b to reduce the number of unknowns we obtain

))(1(
)()1(

),(
*1

*

zzsz
sPzz

szP o
i

λµ
µ

−−−
−−

=
+

 (3)

where)(* sPo is the Laplace transform of the distribution of

the idle state po.)(* sPo can be determined using the
property of analyticity of the transformations. The solution
to equation (3) is

(
)4()()1(

)()()(

2

2

1
2)1(2)()(




−+

++=

∑
∞

++=

−

++
−−

−
−+−

ikj
j

jk

ik
ik

ik
ikt

k

atI

atIatIetP

ρρρ

ρρµλ

where 2/12, µρ
µ
λρ == a

and 1
!)!(

)2()(
0

2

−≥
+

=∑
∞

=

+

k
mmk

xxI
m

mk

k is the modified

Bessel function of the 1st kind (4).

Figure 3

Equation (4) is ill suit for calculation using numerical
methods. It not only multiplies increasing and decreasing
exponentials but an infinite sum of them. Instead, for the
present analysis we have chosen to follow the Orthogonal
Least-Squared Approximation method suggested by Bolot
[3].

VI. OLS APPROXIMATION TO THE
TRANSIENT ANALYSIS OF THE M/M/1
QUEUE

Equation (4) represents the instantaneous state probability
distribution of the M/M/1 system. That is a whole
distribution for every instant of time. However, we are more
interested in how the average queue size evolves with time
rather than its instantaneous value. We define the transient
mean queue size as

∑
∞

=

=
0

)()(
j

j
tojtQ P

It is obvious that the mean queue size for t→∞ must be
)1()(ρρ −=∞Q as defined in Section III.

It can be shown that Q(t) is monotonically increasing with
exponential behavior [5]. The Orthogonal Least-Squared
Approximation (OLS) uses the following model

0)(
1

>+= ∑
=

−
i

n

i

tb
ion beaatq i

to approximate Q(t). The measure of approximation is the
L2 norm

() ∫
∞

−=−
0

2
2)()()()(dttqtQtqtQL nn

Of course, we can eliminate the square root minimizing the
square of the L2 norm with respect to the ai and bi
coefficients. In any case, this is not an easy task, which
becomes harder as we raise the order of our approximation
model.

A first order model is quite simple and can be expressed in
closed form. Let the model be

()
ρ

ρ
−

=−= −

1
1)(1 qwhereeqtq tb

n

then, minimizing

() ()∫
∞ −−−=−

0

2

1
2
2

11)()()(dteqtQtqtQL tb

we get)2539.01()1(2

1 ρρµ +−≈b .

b1 is the reciprocal of the time-constant of the exponential
function. The time constant τ is a better demonstrator of the
system�s dynamics

)2539.01()1(
11

2
1 ρρµ

τ
+−

==
b

 (5)

The first order approximation works quite well for small ρ
but it is not so accurate for ρ closer to 1. Figure 5 shows the
real Q(t) and the 1st and 2nd order approximations for ρ=0.9.

Figure 5

The second order approximation uses the model
0,0)()(21112

21 >>+−+= −− bbwhereeaqeaqtq tbtb

The minimization procedure gets more cumbersome and the
optimal coefficients must be found by numerical methods.

For instance for ρ=0.9, ai=-4.401, b1=0.0572µ ,and
b2=0.0058µ . Figure 5 shows that q2(t) approaches Q(t)
very closely even for high ρ. The approximation errors can,
also, be calculated numerically.

The beauty of the OLS analysis is its simplicity, and the fact
that allow us to characterize the M/M/1 dynamics with very
simple parameters. It is customary to characterize a signal�s
exponential behavior by its time constant (also called
relaxation parameter). The 1st order approximation model�s
time constant is expressed by Equation (5) as a function of ρ
and µ. Figure 6 shows the Time Constant τ as a function of
µ (i.e. the processor�s average service time), parameterized
by ρ.

Figure 6a

The 2nd order model has two time constants one for each
exponential

Figure 6b

Figure 6c

As both plots show, the model�s dynamics speeds up with µ.
That is, faster processors or a larger number of them per
Farmlet will lower the time constants of the exponentials and
the system approaches faster to its steady state. Secondly, it
can be observed that higher ρ �slow down� the system�s
dynamics. Of course, the price to pay for this slower
dynamics is a larger average queue size but this should not
be an issue in our case because the average event size is
small (~1.5 Kbytes). On the other hand, ρ, which is a design
parameter, will be chosen based on the allowed Farmlet�s
�idle time�, which is the expensive commodity, and not
based on memory buffer size. Indeed, the memory buffer
size is a dependent variable.

The 1st and 2nd order approximation time constants allow us
to calculate how much time we allow to restore the failed
processor in the Farmlet as a function of how much excess
buffering and processing latency we can afford.
Furthermore, as we increase ρ, the system can enter quickly
into the unstable mode and all new events will be queued up,
forcing the Buffer Manager to start throttling out data.

Figure 7

A behavioral simulation of the Farmlet�s transient response
with about 50 thousand events shows similar results (Figure
7). The simulator models a Farmlet with four processors. At
startup the input buffer is empty and the time constant
measured is close to 3µs. One of the processors simulates a
failure at 15ms and is restored at 43 ms. The time constant of
the change of state is longer because the accumulated data
smooth out the transition.

Data Purging
The L1 Trigger is a data-push architecture. There is not
feedback mechanism between stages that can stop the
dataflow. Hence, each stage must implement a way to cope
with instantaneously high flow rates and eventually with
overflows.

The strategy implemented in the L1 Trigger avoids all buffer
overflows using a technique that purges data when the
buffers are close to overflow. This is a controlled way of
handling data that cannot be processed. Those events can be
reported to other trigger stages, including the TS number of
the data that could not be processed. In this way,
unprocessed data in L1 Trigger is not thrown away. Instead
L1 Trigger reports to L2/3 that events with certain TS could
not be processed and should be processed by L2/3.

VII. CONCLUSIONS
The analysis of the Farmlet�s dataflow models the dynamic
behavior of the data as it goes though stages of processing.
The study of the queue dynamics in an event of failure is
critical in the Farmlet design. The transient analysis of the
Farmlet behavior estimates the average time allowed to
intent a processor recovery upon failure. This time is a
function of the average queue size increase and average
workload increase in the functioning processors. The queue
dynamics� time constant allows us to design recovery
techniques of temporary processor failures.

REFERENCES
[1] E. Gottschalk, �BTeV detached vertex trigger�, Nucl.
Instrum. Meth. A 473 (2001) 167.
[2] BTEV-RTES group, �RTES-ITR proposal�, BTEV-doc-
1002-v1, July 29 2002.
[3] Bolot,J.-C,Shankar,A, �Optimal least-squares
approximations to the transient behavior of the stable M/M/1
queue�, Communications, IEEE Transactions on , Volume:
43 Issue: 234,Feb./March/April1995 Page(s): 1293 -1298
[4] G. Cancelo, �Level 1 Pixel Trigger Data Flow Analysis�,
BteV-doc-1177-v1, Sept. 2002.
[5] G. Cancelo, �Dataflow analysis in the L1 Pixel Trigger
Processor Farm�, BteV-doc-1178-v1, Sept. 2002.

τ~3ms

	III. FARMLET MODELS
	V. TRANSIENT ANALYSIS
	VI. OLS APPROXIMATION TO THE TRANSIENT ANALYSIS OF THE M/M/1 QUEUE
	[5] G. Cancelo, “Dataflow analysis in the L1 Pixel Trigger Processor Farm”, BteV-doc-1178-v1, Sept. 2002.

