Contents
 MACROBUTTON HtmlResAnchor
(double-click on the page numbers to go to that item)

1

Introduction

User Guide
2

Installation
2

Installing the Pbert
2

Installing the software
2

Installing the Tbert and Rbert
2

User Interface
3

Startup
3

Display Screen
3

Commands
4

Notes on Supported Links
6

ECL 50-Pin Connector
6

Finisar / G-link
6

Quad G-link receiver (Qbert)
7

TTL-Level Xbert
8

Interfacing Guide
9

Daughterboard Adapter
9

Transmitter Signals
9

Receiver Signals
9

Clocking Schemes
10

Mechanical
10

Integrated Adapter
10

Debugging Guide
11

Common Elements
11

Control Link Protocol
11

Power Connector
11

FPGA files
11

PBERT
12

TBERT
12

RBERT
12

Software
13

Hardware Register Formats
13

Program Flow
13

Subroutine Descriptions
14

Error Messages
14

Appendix L: Logbook
16

Appendix W: Windows issues
16

Installing under Win95
16

Registering the xbr file type
16

Xbert Bit Error Rate Tester
Fermilab ESE Group

Document #
xxxxx (Preliminary version. Not for distribution.)

Author:

Don Husby

Printed:

24-Feb-99
Revised:

21-Oct-97

Also available on the WWW as:

http:// www-ese.fnal.gov/projects/svx/bert/Xbert.htm

Introduction

The XBERT is a general-purpose Bit Error Rate Tester for high speed links. It can generate and check arbitrary data patterns as large as 32K by 32 bits at speeds up to 63.5 Mwords/Sec.

As shown in Fig 1, the Xbert consists of three modules: a transmitter (Tbert), a receiver (Rbert), and a PC host interface (Pbert). The Tbert sends a continuous pattern out through the test link. The Rbert receives the pattern and checks it. The Pbert controls the other two modules via a 1-MHz electrically-isolated serial link. This three-card architecture allows the transmitting end of a test-link to be electrically and physically isolated from the receiving end.

Fig 1 Xbert block diagram

[image: image1.bmp]

PBERT:
PC Host card

TBERT:
Transmitter card

RBERT:
Receiver card

Since the circuitry is implemented using FPGAs, it can be easily modified to accommodate most types of clocking and handshake protocols. The standard 50-pin single-ended ECL connector should be sufficient to support most links. When timing is critical, the Xbert circuitry can be customized and placed on the same PC board as the link circuitry. The MACROBUTTON HtmlResAnchor specifications
 section lists links that are currently supported.

The user interface software runs under MS-Dos (or in a Dos window) and allows the user to configure and monitor the Xbert. Basic operations include creating and loading test patterns, starting and stopping a test, monitoring error statistics, and setting operating characteristics such as clock speed.

Specifications
Pattern length
32K Words

Pattern width
1 to 32 bits

Word rate
16 to 63.5 MHz

variable by 0.5 MHz

Host Computer
MS-Dos PC with

16-bit ISA slot

Supported Links:

 MACROBUTTON HtmlResAnchor ECL 50-pin connector

 MACROBUTTON HtmlResAnchor Finisar / G-Link adapter.

 MACROBUTTON HtmlResAnchor SVX GRT Quad G-link receiver (TTL)

 MACROBUTTON HtmlResAnchor TTL Xbert

User Guide

Installation

Use the following simple steps to install the Xbert.

1) MACROBUTTON HtmlResAnchor Set the Pbert I/O base address and install in a free 16-bit ISA slot in your PC.

2) MACROBUTTON HtmlResAnchor Copy the software and supporting files to an appropriate directory on your hard drive.

3) MACROBUTTON HtmlResAnchor Setup Tbert and Rbert and connect them to Pbert via 8-wire control links.

4) Power up PC, Tbert and Rbert, and run xbert.exe.

Fig 2 Pbert Base Address Setting

Installing the Pbert
Before installing the Pbert, set its base address via the dip-switch MACROBUTTON HtmlResAnchor (Fig 2)
. The Pbert requires 16 bytes of I/O register space on a 16-byte boundary. The default base address of 310 should be used whenever possible. If an address other than 310 is used, then the environment variable XBERT_BASE should be set to the proper value by adding the following line to your autoexec.bat file:

SET XBERT_BASE=### (Where ### is the base address)

If you’re running under Windows95, you can check for free I/O space and reserve I/O space using the Control Panel/System applet (MACROBUTTON HtmlResAnchor See Appendix W
).

Fig 3 Pbert connector locations

Rbert Control Link

Tbert Control Link

Auxiliary Control Links

Base Address Dipswitch

Installing the software
The latest software for the Xbert can be found at the web site:

 MACROBUTTON HtmlResAnchor http://www-ese.fnal.gov/eseproj/svx/bert/soft.htm

The software includes the user interface program (xbert.exe) and a number of data files. All of these files should be copied to a directory on your hard disk. The software should be run from that directory. Under Windows95, you can register the .xbr type so that clicking on a .xbr script will automatically start xbert.exe (MACROBUTTON HtmlResAnchor See Appendix W
).

Xbert.exe uses several types of data files:

Fig 4 Rbert/Tbert connectors.

Power Connector

G-Link Adapter

50-Pin ECL

Clock Jumper

Control Link
*.XCF
Xbert Chip files. These are configuration files for the Xbert gate arrays. The default chip files are xbert_p.xcf, xbert_t.xcf, and xbert_r.xcf. MACROBUTTON HtmlResAnchor Other link types
 may require different xcf files.

*.PAT
Pattern Files. These are user-generated pattern files. Note that many useful patterns are built-in to the software and do not require PAT files.

*.XBR
Xbert script files. These are startup scripts that contain configuration information. You can create scripts that automatically setup the Xbert, load patterns, and run tests. An XBR script can be specified on the command line when xbert.exe is started.

Installing the Tbert and Rbert
Depending on your test requirements, the Tbert and Rbert can be installed in separate boxes with separate power supplies, or they can reside in the same box and share a power supply. Install all cables and link adapters before turning on the power.

Fig 5 Rbert clock inversion jumper

True Clock
Inverted Clock

There is one jumper on the Rbert that inverts the received strobe. Fig 5 shows how to configure the jumper for true or inverted clocking.

User Interface

Startup

Under DOS: Xbert.exe should be run from the directory in which it was installed. It can be started by simply typing “XBERT” at a DOS prompt. An optional startup script (.xbr file) can be specified on the command line. If no startup script is specified, then Xbert tries to execute commands from xbert.xbr.

Under Windows: The user interface can be started by double-clicking on the xbert.exe icon or by double-clicking on a .xbr script file icon. If you click on an xbr file, Xbert will execute that startup script. If you click on Xbert.exe, it will try to run the Xbert.xbr startup script. Note that if you are running Xbert for the first time, windows may respond with the “Start With” dialog box. See MACROBUTTON HtmlResAnchor appendix W
 for instructions on how to register the .xbr file type.

The startup script configures the hardware and other test parameters. The typical startup script should have the following elements:

1) Specify chip files (.xcf) to configure the programmable gate arrays. (This step is required and should be done first).

2) Configure clock hardware (Speed, edge, etc.)

3) Set flag names and handshake protocol.

4) Configure pattern

5) Load Pattern

During startup several sanity checks are made on the hardware to insure that it is working properly. The debugging guide lists MACROBUTTON HtmlResAnchor
 MACROBUTTON HtmlResAnchor error messages
 and possible causes.

Fig 6 Xbert Display Screen

╔═ Status ═══╗

║ TBERT: RUN_T READY_T RESET_T DIV1_T M20_T FILL_FRAME ║

║ RBERT: RUN_R READY_R RESET_R DIV1_R M20_R SYNCED ║

║ 0 Errors / 0.0e+00 Words =0.0e-00 E/W (0 Days 0.00 Hours) ║

╠═ Configuration ══╣

║ Clock: 44.0 MHz sync dav_free one_edge ║

║ Chip: tbert.xcf / rbert.xcf Port=0 Dev=0 ║

║Pattern: =random Mask: 0000FFFF.FFFF0000 Offset: 1 ║

╠═ Log ══════ TEST3.LOG ══╣

║0820 11:34:16 Reading commands from glink.xbr ║

║0820 11:34:16 Log file TEST3.LOG opened ║

║0820 11:34:16 Loading file PBERT.XCF ║

║0820 11:34:16 Loading file TBERT.XCF ║

║0820 11:34:16 Loading file RBERT.XCF ║

║0820 11:34:16 Sanity check: System appears to be working ║

║0820 11:34:16 Pattern successfully transferred to remote modules ║

║0820 11:34:16 RUN 44Mhz tbert.xcf rbert.xcf =random[000FFFFF.00000000] ║

╚══╝

> handshake READY_R

> offset 1

> mask 000FFFFF

> pattern random

> run

Display Screen

Figure 5 shows the display screen immediately after a typical startup. The following describes elements of the display screen:

1
Hardware flags show the current status of the remote modules. Flag names are highlighted if the flag is on. Flag names are user-defined and can be associated with any bit of the 16-bit Tbert or Rbert status word. A description of the status word can be found in the MACROBUTTON HtmlResAnchor FLAG command
 description below.

2
Error statistics include the total number of errors, the total number of words transferred, the error rate (errors per word) and the total test time.

3
Clock configuration includes clock speed and synchronization settings. See the MACROBUTTON HtmlResAnchor CLOCK command
 description below for more details.

4
Chip files are the names of the firmware files that are currently downloaded into the Tbert and Rbert. If the names are dimmed, then the files have not been successfully loaded.

5
Port and Dev indicate which of the 4 control ports and which of the four links are selected. The Pbert has 4 control link ports. Some versions of the Tbert or Rbert may have control up to four devices. Currently, the software supports the selection of Port and Device, but does not support the running of tests on more than one port or device at the same time.

6
Pattern indicates the name of the currently loaded pattern. If the name is dim, then the pattern has not been successfully loaded. The mask indicates which of the 32 bits in the pattern word are being used. The offset indicates the number of words required by the receiver before it should start checking the pattern. See the MACROBUTTON HtmlResAnchor Pattern
, MACROBUTTON HtmlResAnchor Mask
, and MACROBUTTON HtmlResAnchor Offset
commands below for more details.

7
The Log area contains detailed error and status messages. It is a scrolling window. Each message is preceded by the current date and time. Messages can also be sent to a log file by using the MACROBUTTON HtmlResAnchor Logfile command
.

8
Commands are displayed in the command window.

Commands

Commands can be entered from the keyboard or they can be used in a .xbr script file.

Configuration and Control Commands

stop

[f5]
Stop the test

run

[f6]
Start the test

clear
[f7]
Clear errors

load
[f8]
Load the current pattern into the remote modules

check
[f4]
Check the current pattern at the remote modules

help
[f1]
Display help file

exit

[alt-x] or [alt-f4] Exit program

source

<file>[.xbr]

Accept further commands from <file>. Default file type is .xbr. If executed from a script, then the current file is closed and the new one is opened.

logfile

<file>[.log] ["new"]

Open <file> as a log file. If “new” then start a new file, otherwise append to existing file. If no file is specified, then the log file is closed. Default file type is .log.

chip

<xmit bit file> <recv bit file> <pbert_file>[.xcf]

Configure FPGAs with these files. This resets and reconfigures the whole system. The default type is .xcf.

port

0-3

Set the Pbert control-link port. Port 0 is the default phone-jack. Ports 1-3 are on the auxiliary control link connector. Currently, software only supports one port at a time.

dev

0-3

Select one of four link devices. Some versions of the Tbert or Rbert may control as many as four test links. This command selects which link to use. In particular, this is used with the GRT to select which of 4 G-link receivers is checked.

xrmask
1-3

Turns off the transmitter or receiver to aid in debugging or remote tests.

1
Transmit only. Ignore the receiver.

2
Receive only. Ignore the transmitter.

3
Normal. Transmitter and receiver are both used.

burst
<limit>

Number of errors in 3 seconds that is considered a fatal link problem. When this limit is reached, the link is reset and patterns are checked and reloaded if necessary. If this happens twice, a fatal error is declared, and the whole system is reset and re-configured. If burst is set to 0, then no burst detection is done.

Clock
<speed>
two_edge/one_edge async/sync dav_hold/dav_free PLL/Xtal Rising/Falling

Set clock speed and configuration. The speed can be any number from 16.0 to 63.5. The other flags determine how the clock is used by the receiver: (See MACROBUTTON HtmlResAnchor Clocking Schemes
 in the User Guide for more information).

two_edge
Data is valid on both edges of the clock. This can be used in parallel links so that the clock signal has the same bandwidth as the data signals.

one_edge
Data is valid at the rising edge of the clock.

sync
The clock is synchronous and runs continuously even when no data is transmitted.

async
The clock only transitions when valid data is sent.

dav_hold
Latch the data-available signal on its first transition. Used when DAV is embedded in the test data.

dav_free
DAV should be used to qualify every data word.

Rising
Output data is clocked on TCLK rsing edge

Falling
Output data is clocked on TCLK falling edge

PLL
Enable PLL clock generator

Xtal
Disable PLL clock generator

Pattern commands

pattern
<file>[.pat] / random / seq / alt / pspike / nspike

Generate a test pattern from a file or from one of the pre-programmed patterns, and apply the current mask, offset, davbit, and clkbit settings. Preprogrammed patterns include:

random
Random data. This uses the rand() function and is always the same random pattern.

seq
Sequential. Bits 14:0 and 29:15 contain the word’s address.

alt
Alternating. Words alternate from all 0 to all 1.

pspike
Positive spike. All words are zero except for location 1 which is all ones.

nspike
Negative spike. All words are ones except for location 0 which is all zero.

offset
<offset>
This sets the pattern offset at the receiver. When data starts coming into the receiver, it may be necessary to toss out one or two words in order to synchronize the memory pattern to the incoming pattern. The offset tells how many words to ignore.

mask

<valid> <set>

Pattern mask. This determines the word width and sets the unused bits to a known state. The first hex number specifies which bits are valid - all other bits are set to zero unless they are set in the <set> field.

clkbit

0-31 or -1

This allows one of the bits in the data to be used as a two-edged clock. When specified, the bit is forced to an alternating 0/1 pattern.

davbit

0-31 or –1 <inv>

This allows one of the data bits to be used as a Data-Available signal. When used, this bit is forced to a 0 at location 0 and a 1 at location 1. All other locations are set by the pattern type. If the Inv is specified, then the davbit is active low instead of high.

davoffset
<offset>
This controls how many words occur before the davbit is toggled. The davbit is toggled on word offset+1.

load
[f8]
Load the current pattern into the remote modules

list
<location>

Lists 10 lines of the pattern starting at <location>

Flag and Handshake Commands

The Tbert and Rbert each have a 16-bit status word. Some of the bits in the status word are user defined and depend on the link being tested. The Xbert software allows you to assign arbitrary names to these flags and to specify how they are used in startup handshake sequences.

flag
<flag number> <Name>

Assigns a name to one of the general purpose flags. The Tbert and Rbert each have 4 general purpose inputs and 4 general purpose outputs. The flags are displayed in the order that they are named. The following table lists flag numbers and their function in the status word. See information on MACROBUTTON HtmlResAnchor specific links
 for detailed bit usage. Numbers are in hexidecimal.

Bits
Function

Tbert
Rbert

3:0
13:10
General-purpose output handshake signals

7:4
17:14
General-purpose input handshake signals

8
18
Data Link ready to send/receive data

9
18
Data Link Error

A
1A
Control-link error

B
1B
Data compare error - Received wrong data.

C
1C
Run – Data link test is running

D
1D
Data Available

E
1E
Error – one of the error bits is on

Note that the Link_Ready flag is special. It is a fast hardware trigger that will stop the transmitter or receiver immediately. It’s polarity can be set in hardware by putting a slash (/) in front of its name.

handshake
flag, flag … = [/]flag [/]flag …

Specifies a step in the startup handshake sequence. Each step is a kind of if-then statement: “wait for the input flags to match the specified state then set the output flags as specified and then move to the next step.” After the last step is satisfied, then the Tbert will start sending data on the link.

If an input flag name is preceded by a / then it must be low to match the condition. If an output flag is preceded by a / then it is driven low when the condition is matched. If no input flags are specified then the condition is always matched.

Note that the handshake sequence is done in software. The maximum speed for executing a handshake step is 40 microseconds (limited by the speed of the control link)

new_flags

Clears the existing flag definitions.

new_handshake

Clears the existing handshake definition.

Example Startup Script.

logfile test3.log
// Open Log file

chip tbert.xcf rbert.xcf pbert.xcf
// Load new FPGA files

clock 44 one_edge sync dav_free
// Set clock parameters

new_flags
// Clear existing definitions

flag C
RUN_T
// Define RUN flag

flag 8
READY_T
// Transmitter ready

flag 0
RESET_T
// Transmitter reset

flag 2
DIV1_T
// PLL speed

flag 3
M20_T
// 16/20 bit select

flag 1
FILL_FRAME
// Fill frame control
flag 1C
RUN_R
// Receiver RUN

flag 18
READY_R
// Receiver ready

flag 10
RESET_R
// Receiver Reset

flag 11
DIV1_R
// PLL speed

flag 12
M20_R
// 16/20 bit select

flag 5
SYNCED
// Receiver is synchronized

new_handshake
// Define a new handshake sequence
handshake /DIV1_T /DIV1_R M20_T M20_R = // Set operating modes

handshake /RESET_R /RESET_T /FILL_FRAME = // Reset devices

handshake RESET_T =
// Release transmitter

handshake RESET_R = READY_T
// When Transmitter syncs, release Receiver

handshake FILL_FRAME = SYNCED
// When Receiver syncs, send FF1
handshake READY_R
// Last step - wait for receiver ready

offset 1
// G-link requires 1 extra word
mask 000FFFFF
// G-link is 20 bits wide
pattern random
// Generate pattern
load
// Load pattern
run
// Start the test

Notes on Supported Links

Fig 7 ECL 50-pin connector pinouts

Transmitter
Receiver

+5V
50
49
+5V
+5V
50
49
+5V

D31
48
47
D30
D31
48
47
D30

D29
46
45
D28
D29
46
45
D28

D27
44
43
D26
D27
44
43
D26

D25
42
41
D24
D25
42
41
D24

D23
40
39
D22
D23
40
39
D22

D21
38
37
D20
D21
38
37
D20

GPI3
36
35
GPO3
GPO3
36
35
GPI3

GPO0
34
33
READY
GPO0
34
33
READY

GPI2
32
31
GPO1
GPO2
32
31
GPI1

GND
30
29
GND
GND
30
29
GND

STB+
28
27
STB-
STB+
28
27
STB-

GND
26
25
GND
GND
26
25
GND

DAV
24
23
GND
DAV
24
23
GND

D19
22
21
D18
D19
22
21
D18

D17
20
19
D16
D17
20
19
D16

D15
18
17
D14
D15
18
17
D14

D13
16
15
D12
D13
16
15
D12

D11
14
13
D10
D11
14
13
D10

D9
12
11
D8
D9
12
11
D8

D7
10
9
D6
D7
10
9
D6

D5
8
7
D4
D5
8
7
D4

D3
6
5
D2
D3
6
5
D2

D1
4
3
D0
D1
4
3
D0

-5V
2
1
-5V
-5V
2
1
-5V

ECL 50-Pin Connector

The 50-pin connector is intended to be used with adapter cards and very short cables. It has 32 data bits, strobe, and some handshake signals. It also has pins that supply +/- 5 volts. Signal levels are 100K ECL.

Using the loopback test cable
Only use the loopback cable that is supplied with the Xbert. It has been modified so that it doesn’t pass the +/- 5 volt power and so that asserts the READY signal. Other cables will not work properly. If you need to make a loopback cable, simply cut the outer 2 wires on each edge of the cable, and short wires 33 and 34 together.

To run a loopback test, use the LOOPBACK.XBR startup script.

See the MACROBUTTON HtmlResAnchor Interfacing Guide
 for a complete description of signal names and functions.

Finisar / G-link

Fig 8 Connections from Xbert to Finisar

Finisar G-link modules connect directly to the Rbert and Tbert via 60-pin high-density connectors. The G-link uses a single-edged, synchronous, inverted clock.

The Rbert clock jumper (Fig 5) should be set to “inverted” and the startup script should set the clock to SYNC, ONE_EDGE, and DAV_FREE.

As shown in Fig 8 the Xbert has access to handshake lines as well as the 16/20-bit word width selection (M20SEL) and one of the PLL clock range signals (DIV1). Fig 10 shows how the handshake signals should be sequenced at startup. Table 1 shows available operating speeds and word widths. Note that the G-link specification says that the maximum word rate in 20-bit mode is 62.5 MHz. This rate can be exceeded if external cooling is used.

Fig 9 G-Link / Finisar Connector pinouts

Table 1 Finisar/G-link Operating Speeds
Width (M20SEL)
DIV1=0
DIV1=1

16-Bit (0)
42-63.5
16-25
MHz

20-Bit (1)
35-62.5
16-21
MHz

To run a test with the Finisar / G-link module, use the GLINK16.XBR or GLINK20.XBR startup script.

Fig 10 G-link Startup Handshake

RESET_T
Release Trans.

LOCKED
Xmit PLL locked

RESET_R
Release Receiver

STAT1
PLL Freq. Lock

FF
Send Fill Type 1

STAT0
PLL Phase Lock

(RUN)
Start Test

SVX GRT Quad G-link receiver (Qbert)

This is a special adapter created to test the G-Link Fiber Receiver Transition Board (GRT). Documentation for the GRT can be found on the MACROBUTTON HtmlResAnchor ESE web site
 at:

 MACROBUTTON HtmlResAnchor http://www-ese.fnal.gov/eseproj/svx/vrb/vrb.htm

Fig 11 GRT Quad G-link Receiver

The Qbert uses the standard Rbert hardware with a 4-way switch at the front end. This allows the Qbert to select one of four G-links from the GRT card. The length of the Qbert has been extended to accommodate the GRT power connector and data connector.

Fig 12 GRT J3 Data Connector Pinout
PIN
A
B
C
D
E

Link O
Link 2

1
D0
GND
rsrv
GND
D0

2
D1
D2
rsrv
D2
D1

3
GND
D3
rsrv
D3
GND

4
D5
D4
rsrv
D4
D5

5
D6
GND
rsrv
GND
D6

6
D7
D8
rsrv
D8
D7

7
GND
D9
rsrv
D9
GND

8
D11
D10
rsrv
D10
D11

9
D12
GND
rsrv
GND
D12

10
D13
D14
rsrv
D14
D13

11
GND
D15
rsrv
D15
GND

12
D16
D16
rsrv
D16
D16

13
D17
GND
rsrv
GND
D17

14
D17
D18
rsrv
D18
D17

15
GND
D18
rsrv
D18
GND

16
D19
D19
rsrv
D19
D19

17
CAV*
GND
rsrv
GND
CAV*

18
DAV*
READY*
rsrv
READY*
DAV*

19
GND
READY*
rsrv
READY*
GND

20
STRB
GND
rsrv
GND
STRB

21
STRB*
ERROR
rsrv
ERROR
STRB*

22
GND
ERROR
rsrv
ERROR
GND

Link 1
Link 3
23
(GND)
GND
rsrv
GND
(GND)

24
(GND)
(GND)
rsrv
(GND)
(GND)

25
GND
(GND)
rsrv
(GND)
GND

26
CAV*
GND
rsrv
GND
CAV*

27
DAV*
READY*
rsrv
READY*
DAV*

28
GND
READY*
rsrv
READY*
GND

29
STRB
GND
rsrv
GND
STRB

30
STRB*
ERROR
rsrv
ERROR
STRB*

31
GND
ERROR
rsrv
ERROR
GND

32
D0
GND
rsrv
GND
D0

33
D1
D2
n/c
D2
D1

34
GND
D3
n/c
D3
GND

35
D5
D4
n/c
D4
D5

36
D6
GND
(GND)
GND
D6

37
D7
D8
(GND)
D8
D7

38
GND
D9
(GND)
D9
GND

39
D11
D10
(GND)
D10
D11

40
D12
GND
(GND)
GND
D12

41
D13
D14
n/c
D14
D13

42
GND
D15
n/c
D15
GND

43
D16
D16
n/c
D16
D16

44
D17
GND
n/c
GND
D17

45
D17
D18
n/c
D18
D17

46
GND
D18
RESET*
D18
GND

47
D19
D19
MODID
D19
D19

To run a test with the Qbert, attach a Finisar transmitter to the Tbert and connect its optical cable to one of the G-Link receivers on the GRT. Execute the QBERT.XBR startup script. Select one of the four G-links using the DEV command and start the test using the RUN command.

Since the GRT doesn’t use the G-link handshake signals, the handshake protocol is “open loop” and must rely on timed steps. The Transmitter’s FF signal should be asserted unconditionally one step after the receiver RESET is released.

Fig 13 GRT J0 Power Connector
PIN
Z
A
B
C
D
E
F

1
Gnd
+5V
+5V
+5V
+5V
+5V
Gnd

2
Gnd
rsrvd
rsrvd
+5V
rsrvd
rsrvd
Gnd

3
Gnd
rsrvd
rsrvd
rsrvd
rsrvd
rsrvd
Gnd

4
Gnd
Vt
User
User
User
User
Gnd

5
Gnd
Vt
User
User
User
User
Gnd

6
Gnd
RET_ZT
User
User
User
User
Gnd

7
Gnd
AREF_AT
User
User
User
User
Gnd

8
Gnd
RET_ZT
User
User
User
User
Gnd

9
Gnd
Vz
User
User
User
User
Gnd

10
Gnd
Vz
User
User
User
User
Gnd

11
Gnd
-5.2V (Vy)
User
User
User
User
Gnd

12
Gnd
-5.2V (Vy)
User
User
User
User
Gnd

13
Gnd
RET_XY
User
User
User
User
Gnd

14
Gnd
AREF_XY
User
User
User
User
Gnd

15
Gnd
RET_XY
User
User
User
User
Gnd

16
Gnd
-5.2V (Vx)
User
User
User
User
Gnd

17
Gnd
-5.2V (Vx)
User
User
User
User
Gnd

18
Gnd
rsrvd
User
User
User
User
Gnd

19
Gnd
rsrvd
User
User
User
User
Gnd

TTL-Level Xbert

Fig 14 TTL Xbert Transmitter connectors

Fig 15 Jumper Settings for TTL R-bert Clock

The jumper block allows independent selection of the clock source for the FPGA and input register.

The input register can be configured as an edge-triggered register, a latch, or a buffer.

Fig 16 Jumper Settings for TTL T-bert Clock

J3 allows you to select the on board PLL or Crystal as the system clock source.

Note also that the software clock modes allow selection of PLL/XTAL and RISING/FALLING. Selecting XTAL will disable the PLL output. Selecting FALLING will invert the output clock (TCLK) relative to the output register’s clock.

The TTL Xbert is almost identical to the ECL version except that it has TTL-level signals. Connector pinouts are shown in Fig 14 TTL Xbert Transmitter connectors and Fig 17.

Some of the timing relationships of the signals are also different, since TLL is somewhat slower technology. Timing diagrams will be included in the MACROBUTTON HtmlResAnchor Interfacing Guide
 when they are available.

Fig 17 TTL Xbert reciever connectors

Interfacing Guide

There are two ways to interface a new link type to the Xbert. MACROBUTTON HtmlResAnchor Daughterboard
: If the link can use ECL signal levels and has minimal space and power requirements, then it can be attached as an adapter card to the ECL 50-pin Connector. MACROBUTTON HtmlResAnchor Integrated:
 If it needs TTL level signals or has very tight timing requirements, then a link interface can be integrated with the Xbert circuitry and placed on a custom PC card.

Daughterboard Adapter

Fig 18 Receiver clock timing
Fig 7 shows the pinouts for the 50-pin ECL connector. All signals are 100K ECL levels. Outputs are terminated with 510 Ohms to VEE. Inputs are terminated with 100 Ohms to -2.5V, except for STB on the Rbert which is a differential signal and is terminated with 100 Ohms across STB+ and STB-.

Transmitter Signals

Fig 19 Transmitter Timing
STB
The strobe is a free-running clock that sets the data word rate. It is synchronous to DATA and DAV. Fig 19 shows the relationship between STB, DATA, and DAV for the Tbert.

DATA
The 32 DATA lines are synchronized to the STB via a registered TTL-to-ECL converter. Their timing is such that they should meet a 10ns setup time and 0ns hold time relative to a 16ns STB signal. While a test is starting, the DATA lines contain the contents of pattern word 0 until DAV- is asserted.

DAV-
This indicates that data is valid. It is active low. It has the same timing as DATA. This signal remains high until all of the handshake requirements are met and a run signal is sent to the Tbert. When the first valid data word is sent, DAV- drops low and stays low until an error occurs or the test is stopped.

READY
This signal is an active-high input. It signals when the test link is synchronized and ready to accept data. If this signal goes low after DAV is low, then the transmitter is stopped and the Data_link_error flag (bit 9) is set in the status register.

GPO[3:0]
These are general-purpose software-controlled outputs. They are controlled using the handshake commands. GPO2 is not available on the 50-pin connector.

GPI[3:0]
These are general-purpose input flags. They can be used by the handshake commands. GPI0 and GPI1 are not available on the 50-pin connector.

+5V,-5V
These are power supply pins. A daughterboard should not draw more than 4 amps from them. They should not be used with a cable.

Receiver Signals

STB
Timing requirements for the STB, DAV, and DATA signals are shown in Fig 18. Also see the discussion on MACROBUTTON HtmlResAnchor clocking schemes
 below.

DATA
32 data inputs. Since these are terminated to -2.5V, any unused inputs should be left floating. Use the MACROBUTTON HtmlResAnchor MASK
 command to mask off unused inputs.

DAV-
This active-low signal can be used to qualify the STB signal. It also has an internal latch that allows it to be used as a start-of-test signal (see MACROBUTTON HtmlResAnchor clocking schemes
).

READY
This signals when the test link is synchronized and ready to accept data. If this signal goes low after the test has started, then the receiver is stopped, the current data word and pattern address are latched, and the Data_link_error flag (bit 25) is set in the status register.

GPO[3:0]
General-purpose outputs. GPO1 is not available on the 50-pin connector.

GPI[3:0]
general-purpose inputs. GPI0 and GPI2 are not available on the 50-pin connector.

Clocking Schemes

Fig 20 Adpater card dimensions
The Rbert can handle several variations on the clock/data relationship. These variations are controlled by three flags (See the MACROBUTTON HtmlResAnchor CLOCK
 command) and the Clock Inversion Jumper (Fig 5). Variations include:

Single Edged:

Data is sampled near the falling edge of the STB. This is typically used for links that re-synchronize data at the receiver. Data can change on the rising STB and has at least ½ clock cycle to settle.

Dual Edged:

Data is sampled 5-10ns after either clock edge. This can be used with parallel links that don’t re-synchronize data. The clock is embedded in the pattern and so has the same bandwidth as the data bits and very little skew relative to the data bits. The MACROBUTTON HtmlResAnchor Clkbit
command will set a selected pattern bit to be a dual-edged clock.

Synchronous:

The clock is a constant frequency and does not stop. Valid data is indicated by a low on DAV-. This is typical of serial links.

Asynchronous:

The clock transitions only when valid data is sent or when the link is active. DAV- is not necessary, but it may be used to qualify data.

DAV Hold:

Some links may not have a DAV signal. In this case, a signal is needed to indicate the start of a test. A selected data bit can be used for this purpose by tying it to the DAV- pin. The first transition on the data bit will be latched and used to gate the clock.

Fig 21 DAV-HOLD timing

Use the MACROBUTTON HtmlResAnchor Davbit
 command to embed a DAV signal into a pattern. Note that since the first transition occurs on word 1, the MACROBUTTON HtmlResAnchor Offset
command should be used to make sure the receive pattern is aligned correctly with the received data.

DAV Free:

The DAV- signal is not latched internally and is used to qualify every clock.

Mechanical

To fit in the standard Xbert box, an adapter card should have the dimensions shown in Fig 20.

The connector should be a standard 50-pin .1” female header. (3M part #?????? Fermilab stock #??????)

Fig 22 TTL Tbert timing
Integrated Adapter

All of the signals described in the MACROBUTTON HtmlResAnchor Daughterboard Adapter
 section are available for use by an integrated adapter. The signals can be TTL or ECL levels. The TTL-level data lines from the Tbert come directly from the pattern RAM chip and have an 8ns clock to output delay.

The TTL circuits of the Tbert and Rbert require +5V. An on board 3.3V converter is used for the memory chip and could supply an extra 500ma of 3.3V to other devices. The -5V supply is not necessary if no ECL circuits are used.

The total size of an integrated adapter should be 3.9 x 9.9 inches in order to fit in the standard Xbert box.

Debugging Guide

This section contains a map of the hardware and software modules with a brief description of each. Schematics are all in PDF format.

Common Elements

Control Link Protocol

The control link is a 1MHz serial link that connects the Pbert to the Tbert and Rbert. Words are transmitted in 39-bit frame:

Bit
Function
0
Start bit - Active high

1-32
Data bits

33-36
Register address bits

37
Parity bit - Forces total frame parity to even.

38
Stop bit - Active low

Fig 23 FPGA reset and initialization.

Serial In

Reset-

Init-

Fig 24 FPGA configuration bits

Serial In

CCLK

DIN

The control link is also used to configure the remote FPGAs. A 1 millisecond high break signal causes reset to be asserted and the FPGA is prepared for initialization (Fig 23). Then each configuration data bit is sent as a single 3-bit frame that includes a start bit, a data bit, and a stop bit (Fig 24).

The MACROBUTTON HtmlResAnchor SERIN.PAL
 handles the serial stream during configuration. It implements a 1ms RC timer to detect break signals and a 4-bit counter to detect 1us bit cells.

Power Connector

Fig 25 Power connector.

+5V
1

GND
2

-5.2V
3

GND
4

The Tbert and Rbert each have a 4-pin power connector.

FPGA files

Fpga files are developed using Workview/Office and Orca Foundry 7.1. Source files are in the Xbert/fpga directory. Routed FPGA files are in the Xbert/fpga/routed directory. Do not make any changes in the routed directory unless you are sure you know what you are doing.

Reading the FPGA schematics

The schematics contain a large number of function generator symbols. A function generator is a single output pin associated with a logic equation. They come it two varieties: combinatorial (UFUNC) and registered (QFUNC). The QFUNC can take attributes to specify register control signals.

Fig 26 Function generator symbols

UFUNC:
U=<equation>
Output

QFUNC:
Q=<equation>
Registered_Output

Qfunc Attributes:

K=<clock_signal>
Default clock name is “CLK”

CE=<clock_enable>

RD=<reset_direct>
Asynchronous reset

SD=<reset_direct>
Asynchronous set

RS=<reset_direct>
Synchronous reset

SS=<reset_direct>
Synchronous set
Compiling FPGA schematics
If you need to make minor changes to the FPGAs, you can edit and re-compile the FPGA schematics. Editing schematics requires the Workview/Office software to be installed. Compiling schematics requires the ORCA Foundry software to be installed. Each FPGA file has an associated .bat file for compiling, place, and route. The .bat files should be run in a DOS window.

Table 2 FPGA resource usage

PFUs
TBUFs
External PICs

TBERT
79
107
68

RBERT

PBERT
84
64
49

To compile a schematic to an un-routed .ncd file, use the .bat file with the CHECK option. This creates a mapping log file (.mog) which should be checked for error messages and resource usage. Resource usage should be close to that in Table 2. If it’s much less, then check the .mrp file for reports of removed logic.

To place and route, use the PAR or PARG option. The PARG option uses the existing part as a guide and works best if minor changes were made to the schematics. If major changes are made, then the PAR option should be used. The router makes several attempts and saves them in a separate folder (T1.dir, R1.dir, or P1.dir). A summary file (*.par) lists the results. The best result should be tested before moving it to the routed folder.

To create a bit file, use the BIT option.

PBERT

 MACROBUTTON HtmlResAnchor Board Level Schematic

The Pbert consists of an ISA connector, an ISA address decode PAL, an FPGA, and several RS-485 drivers for the control link.

 MACROBUTTON HtmlResAnchor ISA Address Decode Pal
 (Current Checksum = 73AE)

FPGA Schematics:

 MACROBUTTON HtmlResAnchor PBERT

Top level schematic.

 MACROBUTTON HtmlResAnchor SERINH

Serial input port (Control Link).

 MACROBUTTON HtmlResAnchor SEROFIF

Serial output port with FIFO.

Fig 27 TBERT block diagram

TBERT

 MACROBUTTON HtmlResAnchor Board Level Schematic

FPGA Schematics:

 MACROBUTTON HtmlResAnchor TBERT

Top level schematic

 MACROBUTTON HtmlResAnchor CLKSPEED

Clock speed control circuit

 MACROBUTTON HtmlResAnchor SERIN

Serial input port (Control Link).

 MACROBUTTON HtmlResAnchor SEROUT

Serial output port.

Fig 28 RBERT block diagram

RBERT

 MACROBUTTON HtmlResAnchor Board Level Schematic

 MACROBUTTON HtmlResAnchor Clock PAL

FPGA Schematics:

 MACROBUTTON HtmlResAnchor RBERT

Top level schematic

 MACROBUTTON HtmlResAnchor RCMP

Comparator Pipeline.

 MACROBUTTON HtmlResAnchor CMP_REG

Comparator register primitive.

 MACROBUTTON HtmlResAnchor SERIN

Serial input port (Control Link).

 MACROBUTTON HtmlResAnchor SEROUT

Serial output port.

Software

The software was developed using Borland C 5.0. To build a new version, use the makefile, Xbert.mak, or the ide file Xbert.ide. The following source files are needed:

 MACROBUTTON HtmlResAnchor Xbert.c

Main source code.

 MACROBUTTON HtmlResAnchor Box.c

Routines for drawing boxes and menus.

 MACROBUTTON HtmlResAnchor Xbert.h

Include file for register definitions.

 MACROBUTTON HtmlResAnchor Box.h

Box include file.

 MACROBUTTON HtmlResAnchor Bit2brt.c

Source code for fpga bit-file converter
Hardware Register Formats

Pbert registers
The Pbert is essentially a dual serial link controller. Its registers are used to send and receive 36-bit words from the Tbert and Rbert. Each word consists of 32 data bits and 4 address bits which specify the remote Tbert or Rbert register.

The Pbert has eight 16-bit registers starting at the location set by the base address dipswitch.

Writeable Pbert registers

To send a data word requires three writes: two 16-bit halves of the data word and one 4-bit write to set the remote register address and send it out the serial link.

Offset
Name
Function

0
Lconfig
Local configuration (reset, parity enable, etc.)

2
SendX
Set 4-bit register address and send current data to Tbert.

4
SendR
Send Rbert

6
SendXR
Send to both

a
DataX
Set transmitter data for Tbert 16 bits at a time.

c
DataR
Set transmitter data for Rbert 16 bits at a time.

e
DataXR
Set transmitter data for Both 16 bits at a time.

Readable Pbert registers

A remote module sends the contents of one of its registers when it receives a read request (remote registers 8-f). That data is saved in the 32-bit Xdata or Rdata register. When there is no request, the remote modules send status and cycle count. These are saved in the Xcycle, Rcycle, Xstatus, and Rstatus registers:

Offset
Name
Function

0
Xcycle
Tbert cycle count

2
Xstat
Tbert Status

4,6
Xdata
32-bit Tbert Data

8
Rcycle
Rbert cycle count

a
Rstat
Rbert Status

c,e
Rdata
32-bit Rbert data

Lconfig register bit definitions

Mask
Name
Function

001
Break
Send break signal (Reset remote modules - clear FPGA)

002
Parity
Disable parity - (used to download FPGA)

004
ErClr
Clear Pbert Errors (overrun / parity errors)

008
Reset
Clear Pbert FPGA and prepare to reload

0e0
ChSel
Channel select - Select channels 0-3 or use 4 for loopback.

100
SetCh
Set Channel - must be 1 to change the ChSel field.

Status register bit definitions (Xstat, Rstat)
Bits 3:0 are local to the Pbert interface:

0001
Sempty
No Status received since last read.

0002
Rempty
No data received since last read.

0004
Full
Control link output FIFO is full.

0008
C_err
Control link got an error.

Bits 15:4 come from the remote module

00f0
Gpi[3:0]
State of Gpi inputs

0100
Ready
Link ready

0200
Lnk_Err
Link Error

0400
Si_Err
Control Link Error at remote end.

0800
Cmp_Err
Compare Error

1000
Run
Run/Idle state

2000
Dav
Data available is asserted

8000
Error
One of the Error bits is on.

Remote writeable registers

1
State
Set operating state (Run, Stop, Flags)

2
Config
Set clock configuration

4
Wram
Write 32 bits to RAM using internal Addr pointer

5
Cram
Compare 32 bits to RAM. Set Cmp_Err if different.

6
Wram+
Write to RAM and increment Addr

7
Cram+
Compare to RAM and increment Addr

Remote readable registers

9
Eword
Send tha data word that caused a compare error (RBERT only)

A
Addr
Send contents of Addr in bits 14:0

C
Rram
Read from RAM and send 32-bit data

E
Rram+
Read from RAM and increment Addr

Remote register #1: State register bits

0001
Idle
Set device to Idle

0002
Run
Start test

0010
ErClr
Clear Errors

0020
AdClr
Clear Addr register to 0

0040
CyClr
Clear Cycle counter to 0

0080
GpoSet
Set Gpo outputs

0f00
Gpo[3:0]
State of Gpo outputs

1000
SoHold
Hold Serial link

Remote register #2: Clock configuration register

7f0000
Clock speed from 16.0 to 63.5mhz in .5mhz steps.

000030
Receiver device select - Select one of 4 devices.

000004
ASYNC

000002
DAV_HOLD

000001
TWO_EDGE

Program Flow

The main program loop does three things:

Check for fatal: if some routine has detected a fatal error, it sets the global Fatal flag. Try to re-initialize all of the hardware.

Decode status: update status and statistics display. Log errors.

Accept command: Characters are accepted from the keyboard one at a time without interrupting the main loop. The command is processed when enter is pressed.

Subroutine Descriptions

Hardware access macros:
Xcycle
Return current hardware cycle count

Rcycle
Xstat
Return Current hardware status

Rstat
Xdata
Return Current Data

Rdata
Lconfig(Dat)
Set local configuration
SendX(Reg,Dat)
Send Data to remote register
SendR(Reg,Dat)

SendXR(Reg,Dat)

WaitX
Wait for serial link FIFO to be un-full

WaitR
WaitXR
Subroutines:
void Plog(char *S)
Print to log
Plog1(T,V)
Formatted Plog with 1 variable
Plog2(T,V1,V2)
Formatted with two variables
void ABox(int X1, int Y1, int X2, int Y2, int Type)

Draw an ASCII box (Type= single or double)

void More(char *File)

Display a file
void Set_port(int N)

Set serial port to 0-3 or local (4)

void NameFlag(int F, char *N)

Attach a user-supplied name to a flag

void Set_ext(char *Name, char *Ext, int Flag)

Set or force file extension
void Pattern(char *Type)

Make a pattern

int Parse(char *S)

Split line into words

void Clink_msg(char *T, char M, int S)

Decode control link errors

long Valid_Status(char *Txt)

Fetch a valid status from the remotes

int ReadReg(int Reg, int Rx)

Read a remote register and place in DataX or DataR global

int Sanity_check(int Level)

 Level 0: All 1: Local only

void ComFile(char *F)

Open command file

FILE * OpenFile(char *Name)

Open bit file

int Load_bit(void)

Reset and load ORCA chips, Do a sanity check. Return 0 if successful. Update Loaded global.

int Load_pat(int Check)

Load or check pattern into remote modules

(Check=1) => Check only

(Check=2) => Load then check

(Check=3) => Check then load if necc.

void Draw_screen(int Level)
Draw boxes and fill in configuration data

int Decode_Status(char *Txt)

Detect and log errors and bursts. Do handshake steps. Update flags and statistics on screen

int Make_Idle(void)
Make remotes idle. Return 0 if success

void Run(void)

void Stop(void)

void Clear(void)

Error Messages

%s <RT>bert Control link error.

When trying to access a remote module, there was a data-overrun or parity error. This is probably due to a program error, but could be caused by faulty connections.

%s Not Receiving status from <RT>bert.

The remote modules should report their status every 80 microseconds. This error indicates that the remote module has probably failed.

%s <RT>bert Control link error at remote end.

The remote module received a parity error or overrun error. This is probably due to noise, but could be a program error.

There is a fatal control link error.

A permanent control-link problem makes it impossible to communicate with the remote modules. The software will attempt to re-initialize the system.

Invalid register (%d) in ReadReg

Parameter error in ReadReg (Rx=%d)

These two messages indicate a software error. You should find the programmer and smack him in the head.

ReadReg failed

The software issued a read request but never got a response. This indicates a hardware problem.

Couldn't set <TR>bert to idle.

Wrote to the Idle bit, but the status won’t change.

Sanity Check Data Error: %s: expect %lx, got %lx

The sanity check first checks that it can send data in local loopback mode, and then tries to write and read the remote memory. If these fail, it indicates a hardware problem.

Local sanity check failed with error status %x

This indicates a problem either the control-link hardware. Since this is mostly in the FPGA, the system should be re-initialized.

Remote Sanity check failed

Sanity check of remote modules failed.

Timeout while loading PBERT bit file. Check Hardware

The very first step of initializing the Pbert has failed. This indicates the Pbert is missing or has the wrong base address.

Pattern file is wrong size

A pattern file must be exactly 128Kbytes.

Unrecognized pattern type [name]

The = character is used to indicate standard pattern types, however the name is not recognized. If you want to load a pattern file, don't include the =.

Load_pat: No pattern has been specified

Load has been requested before a pattern has been set.

Check <TR>bert: Adr=%4.4x Got %8.8lx Expect 8.8lx

The pattern at the remote node got corrupted.

data tsync rsync Adr=#### Got=######## Expect=########

Link error. This was caused by the link being tested.

Burst error....

Several link errors in a row. The software will check the pattern in case this was caused by a corrupted pattern.

Fatal burst error....

Several more link errors. The software will reset and reload the FPGA files.

Attempting to re-initialize

If a fatal error occurs, then the system is reset and re-initialized.

Program Halt. Press ENTER to continue

If too many fatal errors, then stop and wait for user intervention.

Invalid clock speed [%s]

The clock speed must be 16.0 to 63.5 MHz.

Unknown clock configuration [%s]

One of the clock configuration words is mis-spelled.

Handshake: Flag <xxx> not found

A Flag name was mis-spelled or never named.

Unrecognized command [%s]

A command was misspelled

Appendix L: Logbook

This is a history of changes and notes on debugging.

Appendix W: Windows issues

The Xbert software can be run in a DOS window under Microsoft Windows 95. There are a couple of features of Win95 that make using the Xbert easier.

Installing under Win95

Win95 monitors I/O space usage and attempts to keep track of all devices and possible conflicts. When installing the Xbert, you can look at the I/O map to find and reserve free I/O space.

To bring up the I/O map, do the following:

Click on the Start button and select Settings (Control-Panel. Double-click on System and select Device-Manager. Double-Click on Computer and select the Input/Output button. The map displays used I/O locations.

The default Xbert location is 310. If you have already run the Xbert software, the locations might be listed as “In use by unknown device”. If the software was previously installed, the locations might be listed as “Reserved by System”.

To reserve space:

It’s not necessary to reserve space, but doing so will mark that space so that other plug-n-play devices don’t try to use it. Bring up the I/O map as described above. Verify that the locations that you want to reserve are available. Click on the Reserve-Resources tab and select Input/Output then Add. Enter the range (e.g. 310 to 31f). Select OK and re-boot when requested. This might also be a good time to install the Pbert board. To do this, do not select re-boot, but exit and then do a normal windows shut-down. Make sure the base address switch setting agrees with the reserved space.

Registering the xbr file type

You can associate the xbr file type with Xbert.exe by simply double-clicking on a xbr file. This brings up the “Open With” dialog box. Select “Other” and brows for Xbert.exe. Double-click on Xbert.exe. In the description box, type the words “Xbert script file”. Make sure the “Always use this program” box is checked. Finally, click OK to start the script.

You can examine and change the file-type registry by using the view (options (file types menu in any explorer window. For more help on this, see the win95 help topic “registering file types”.

PBERT

1 Mbs control

links (RS-485)

 TBERT

Test Link

 RBERT

Test Link

PC Address bits

1

2	Register Select

3

4

5

6	Base Address

7

8

9

Unused

On

1

2

3

4

5

6

7

8

Shown with default setting = 310h

1

2

3

5

4

6

7

8

Data Finisar

STB G-Link

DAV Receive

RESET

DIV1

M20SEL

STAT0

STAT1

Data Finisar

STB G-Link

DAV Transmit

RESET

FF

DIV1

M20SEL

LOCKED

Data

Tbert STB

DAV

GPO0

GPO1

GPO2

GPO3

READY

Data

Rbert STB

DAV

GPO0

GPO2

GPO3

READY

GPI1

Transmitter

	

	Gnd (E)	31	1	Gnd (D)

	Lock	32	2	VTT

	M20sel	33	3	VTT

	Vee (E)	34	4	Flagsel

	Vee (E)	35	5	Gnd (E)

	CAV~	36	6	DAV~

	Strb+	37	7	FF

	Strb-	38	8	ED

	Flag	39	9	D 0

	Gnd (E)	40	10	D 1

	D 2	41	11	D 3

	D 4	42	12	D 5

	D 6	43	13	D 7

	D 8	44	14	D 9

	D 10	45	15	Gnd (E)

	D 12	46	16	D 11

	D 14	47	17	D 13

	D 16	48	18	D 15

	D 18	49	19	D 17

	Gnd (E)	50	20	D 19

	NC2	51	21	Gnd (E)

	Ofc_Stat	52	22	DIV1

	Reset~	53	23	Loopen

	DIV0	54	24	Opt Pwr

	CS~	55	25	SYS1

	SI	56	26	Ready

	SO	57	27	NC3

	SCLK	58	28	SYS2

	Gnd (E)	59	29	Vcc (D)

	Gnd (D)	60	30	NC1

Receiver

	

	Gnd (D)	31	1	Vcc (D)

	DIV1	32	2	DIV0

	ERR	33	3	Gnd (E)

	D 1	34	4	D 0

	D 3	35	5	D 2

	D 5	36	6	D 4

	D 7	37	7	D 6

	Gnd (E)	38	8	D 8

	D 10	39	9	D 9

	D 12	40	10	D 11

	D 14	41	11	D 13

	D 16	42	12	D 15

	D 18	43	13	D 17

	Gnd (E)	44	14	Gnd (E)

	CAV~	45	15	D 19

	LinkRdy~	46	16	Flag

	LoopEn	47	17	FF

	Active	48	18	DAV~

	FDis	49	19	Rx_Sig_Det

	Gnd (E)	50	20	Strb-

	Eqen	51	21	Strb+

	Opt_Pwr	52	22	SimClk-

	Sys2	53	23	SimClk+

	Sys1	54	24	Stat1

	FlagSel	55	25	Gnd (E)

	VEE	56	26	Stat0

	VEE	57	27	M20Sel

	SmRst1~	58	28	VTT

	SmRst2~	59	29	VTT

	Gnd (E)	60	30	Gnd (D)

Data

Rbert STB

DAV

READY

GPI1

GPO0

RESET

GLINK 3

GLINK 2

GLINK 1

GLINK 0

SWITCH

Data

STB

DAV

READY

ERROR

50-Pin connector

	

	D0	1	2	GND

	D2	3	4	D1

	D4	5	6	D3

	D6	7	8	D5

	D8	9	10	D7

	GND	11	12	D9

	D10	13	14	D11

	D12	15	16	D13

	D14	17	18	D15

	D16	19	20	D17

	D18	21	22	GND

	D20	23	24	D19

	D22	25	26	D21

	D24	27	28	D23

	D26	29	30	D25

	GND	31	32	D27

	D28	33	34	D29

	D30	35	36	D31

	DAV	37	38	GND

	GND	39	40	TCLK+

	RDY	41	42	GND

	CNT1	43	44	CNT2

	STAT1	45	46	STAT2

	GND	47	48	GND

	+5V	49	50	+5V

60-Pin connector

	

	D0	31	1	GND

	D2	32	2	D1

	D4	33	3	D3

	D6	34	4	D5

	GND	35	5	D7

	D8	36	6	D9

	D10	37	7	D11

	D12	38	8	GND

	D14	39	9	D13

	D16	40	10	D15

	D18	41	11	D17

	GND	42	12	D19

	D20	43	13	D21

	D22	44	14	D23

	D24	45	15	D25

	D26	46	16	GND

	D28	47	17	D27

	D30	48	18	D29

	DAV	49	19	D31

	GND	50	20	GND

	TCLK+	51	21	TCLK-

	GND	52	22	GND

	RDY	53	23	CNT0

	CNT2	54	24	CNT1

	GND	55	25	CNT3

	STAT0	56	26	STAT1

	STAT2	57	27	STAT3

	GND	58	28	GND

	+5V	59	29	+5V

	nc	60	30	nc

50-Pin connector

	

	D0	1	2	GND

	D2	3	4	D1

	D4	5	6	D3

	D6	7	8	D5

	D8	9	10	D7

	GND	11	12	D9

	D10	13	14	D11

	D12	15	16	D13

	D14	17	18	D15

	D16	19	20	D17

	D18	21	22	GND

	D20	23	24	D19

	D22	25	26	D21

	D24	27	28	D23

	D26	29	30	D25

	GND	31	32	D27

	D28	33	34	D29

	D30	35	36	D31

	DAV	37	38	GND

	GND	39	40	RCLK50

	RDY	41	42	GND

	STAT1	43	44	STAT2

	CNT1	45	46	CNT2

	GND	47	48	GND

	+5V	49	50	+5V

60-Pin connector

	

	D0	31	1	GND

	D2	32	2	D1

	D4	33	3	D3

	D6	34	4	D5

	GND	35	5	D7

	D8	36	6	D9

	D10	37	7	D11

	D12	38	8	GND

	D14	39	9	D13

	D16	40	10	D15

	D18	41	11	D17

	GND	42	12	D19

	D20	43	13	D21

	D22	44	14	D23

	D24	45	15	D25

	D26	46	16	GND

	D28	47	17	D27

	D30	48	18	D29

	DAV	49	19	D31

	GND	50	20	GND

	RCLK+	51	21	RCLK-

	GND	52	22	GND

	RDY	53	23	CNT0

	CNT 2	54	24	CNT1

	GND	55	25	CNT 3

	STAT 0	56	26	STAT1

	STAT 2	57	27	STAT 3

	GND	58	28	GND

	+5V	59	29	+5V

	nc	60	30	nc

15ns

5ns

STB

DAV-

RCLK

DATA

RCLK

STB

DAV-

Single Edged

5ns

RCLK

STB

DAV-

Dual Edged

8ns

3ns

STB

DAV-

RCLK

DATA

Pattern

RAM

DATA

DAV-

XCLK

XCLK

STB

DATA

0.4ns

1.4ns

4.0ns

2.0ns

STB+

STB-

50-Pin

Connector

TTL

to

ECL

REG.

0“

0“

0“

0“

Side view

Top View

Mechanical Drawing to be added later

STB

DATA

(internal DAV-)

RCLK

Word 1

Word 0

XCLK

DATA

8.0ns

2.0ns

XCLK

DATA

DAV-

Pattern

RAM

configuration bits

1ms

500us

1ms

Stop

Data

Start

1us

32

Ready

Status

Control

Dav-

 Link

Circuitry

Clock

Data

Clock

Generator

Synchronous

SRAM

32

FPGA

Address

Sequencer

Control

Link

FLAGS

4

4

15

T

R

A

N

S

L

A

T

O

R

S

Ready

Status

Control

 Link

 Circuitry

Data

Clock

Dav-

Clock

PAL

32

Synchronous

SRAM

32

FPGA

Address

Sequencer

Control

Link

Compare

FLAGS

4

4

15

T

R

A

N

S

L

A

T

O

R

S

Reg LE

Gnd

Vcc

Reg Clk

FPGA Clk

RCLK-

RCLK50

RCLK+

Registered

Latched

Buffer

Input Register Mode

Edge Select

Falling

Rising Edge

Note that the pinout of CNT[3:0] and STAT[3:0] shown here is different from earlier documents. This is the correct pinout as of May, 1998

Xtal

Clock Source

Clock

J3

PLL

