SNAP
PMC Firmware for controlling Flash Memory RAD Test Board
PAC top level. JN2 Outputs.

Title: Bradley Hall - SNAP Memory Test
Name: October 14, 2003
When LVDS_TRX_DE is '1', then the LVDS Transceiver on the Memory Board is driving signals to the PMC.

The equivalent equation is:

$$LVDS_{TRX_DE} = TR_{LVDS}$$

LVDS_TRX_DE is a copy of the Transceiver_T/R signal on the SNAP Memory Board schematic.

When LVDS_TRX_DE = '1', the Memory Board is driving LVDS_IO signals to the PMC.

Delay is to account for bus turnaround time and avoid bus contention.

Delay is determined by DelayCount(15:0) value * DelayCntrCLK period

$$~5.24\text{m sec}$$

IO_Direction

When IO_Direction = '1', PMC is receiving.

When IO_Direction = '0', PMC is driving.

Desired waveforms.
When LVDS_TRX_DE is '1', then the LVDS Transceiver on the Memory Board is driving signals to the PMC.

The equivalent equation is:

\[\text{LVDS_TRX_DE} = \text{TR_LVDS} \]

When LVDS_TRX_DE = '1', the Memory Board is driving LVDS IO signals to the PMC.

When IO_Direction = '1', PMC is receiving. When IO_Direction = '0', PMC is driving.

Delay is to account for bus turnaround time and avoid bus contention. Delay is determined by DelayCount(15:0) value * DelayCntrCLK period ~5.24m sec

This is emulating what is on the memory board.

Desired waveforms.
When LVDS_TRX_DE is '1', then the LVDS Transceiver on the Memory Board is driving signals to the PMC.

The equivalent equation is:

\[\text{LVDS_TRX_DE} = \text{TR_LVDS} \]

Desired waveforms.

LVDS_TRX_DE is a copy of the Transceiver_T/R signal on the SNAP Memory Board schematic.

When LVDS_TRX_DE = '1', the Memory Board is driving LVDS_IO signals to the PMC.

Delay is to account for bus turnaround time and avoid bus contention. Delay is determined by DelayCount(15:0) value * DelayCntrCLK period.

Delay, C

\[\approx 5.24 \text{m sec} \]

IO_Direction

When IO_Direction = '1', PMC is receiving.

When IO_Direction = '0', PMC is driving.

C
When LVDS_TRX_DE is ‘1’, then the LVDS Transceiver on the Memory Board is driving signals to the PMC.

The equivalent equation is:
LVDS_TRX_DE = TR_LVDS

When LVDS_TRX_DE is ‘1’, the Memory Board is driving LVDS_IO signals to the PMC.

Delay is to account for bus turnaround time and avoid bus contention. Delay is determined by DelayCount(15:0) value * DelayCntrCLK period

~5.24m sec

When IO_Direction = ‘1’, PMC is receiving.
When IO_Direction = ‘0’, PMC is driving.