
FPIX1 Digital Architecture and Operation:
Design and Simulations

Jim Hoff
PPD/ETT/ES
June 25, 1998

1

Abstract..2

Introduction..3

Logic Cells...4

The Pixel Cell ...4

A Detailed Description of the Commands...5

A Detailed Description of a Hit from the Pixel Cell’s Perspective......................................7

A Detailed Description of Outputting from the Pixel Cell’s Perspective...........................10

A Detailed Description of Resetting from the Pixel Cell’s Perspective.............................11

Interface Limitations as dictated by the Pixel Cell ...12

The End-of-column Logic...14

The Priority Encoder ...15

The End of Column State Machine...16

The End-of-column Register, Comparators and Mask Register..19

A Detailed Description of a Hit from the End-of-column Logic’s Perspective..................20

A Detailed Description of Outputting from the End-of-column Logic’s Perspective.........22

The Chip Logic...24

2

Verilog Simulations..26

Abstract

FPIX1 is a test chip for the C0/BTeV collaboration. It represents a first step towards the

final pixel readout architecture necessary for this experiment. It does not use multiple

tokens, FIFOs or multiple end-of-column readout busses to increase speed. Its purpose is to

determine exactly how fast the chip can process information internally and therefore allow

accurate extrapolation of the ultimate possible speed. The FPIX1 Digital Architecture can

be divided into three mutually dependent pieces. These are the Pixel Cell, the End-of-

column Logic and the Chip Logic. The Pixel Cells control individual pixel detectors.

There will be almost 3000 Pixel Cells on the FPIX1 chip. They receive commands from

and transmit information to the End-of-column Logic. Separate End-of-column Logic cells

control each column. There will be 17 End-of-column Logic cells on the FPIX1 chip.

They each control 160 Pixel cells, receive data from those cells and pass that data on to the

Chip Logic. The Chip Logic receives information from the outside world, processes it, and

passes that information on to the End-of-column Logic cells. It also receives data from the

End-of-column Logic and passes it on to the outside world. There will be only one Chip

Logic cell on the FPIX1 chip. The performance of the FPIX1 chip critically depends on the

exchange of information between these three processing pieces. This paper is concerned

with that information exchange and the algorithms used in the chip.

3

Introduction

FPIX1 is a single step towards the final FPIX chip which will satisfy, as much as is

possible, the requirements of the C0/BTeV collaboration. As such, it is expected there will

be changes and additions to FPIX1. These changes will be determined after FPIX1 has

been tested. The task set out for FPIX1 is as follows: a 1x8 array of FPIX1 chips will

simultaneously acquire data from approximately 23000 ATLAS-style pixel detectors

during a beam test.

A basic tenant of the FPIX1 design is that it must be as simple as possible. This

fundamental assumption serves two purposes. First, the simpler a system is, the more

easily it is tested and the less there is that can possibly go wrong. Second, the simplest

system provides a data point from which the performance of the final system with all of its

additional complexities can be reliably extrapolated. This basic tenant of FPIX1 has

eliminated grouping, FIFOs, multiple tokens and multiple readout buses from the design.

All of these complexities can (and probably will) be added in future designs, and they will

only increase the readout speed.

The rest of this paper will concern the operation of the Pixel Cell, the End-of-column

Logic, and the Chip Logic and the inter-operation of these pieces.

4

Logic Cells

The Pixel Cell

The above picture shows a black-box view of the Pixel cell, and, in particular, its two major

components: the Command Interpreter and the Token and Bus Control. The Command

Interpreter accepts an analog hit from the pixel detector and depending on the status of the

End-of-column Commands, processes the hit. If appropriate, the End-of-column Logic is

alerted to the presence of a new hit via the Fast OR signal. When commanded by the End-

of-column Logic, the Command Interpreter requests the bus via the Token and Bus Control

Logic. The End-of-column Logic will provide a token to the column of Pixel Cells as a

means to regulate bus access. This token will propagate through the Pixel Cells with no

Pixel Command Interpreter Pixel Token and Bus Control

Token In

Analog Hit

Bus

End of Column CommandsFast OR Token Out

Pixel Data

Figure 1: Pixel Cell: Black Box View

Request

5

information and stop where the Bus is requested. When a bus is requested and a token is

received, the pixel’s data is loaded onto the buses and driven to the End-of-column Logic.

Finally, if commanded by the End-of-column Logic, a pixel will reset its contents.

A Detailed Description of the Commands

First, each column is a separate entity, so commands from one End-of-column Logic cell

go only to its own column. Second, the End-of-column Logic commands all Pixel Cells

simultaneously. This second point is particularly important because it means that the End-

of-column Logic and the Pixel Cells must coordinate command and interpretation to

guarantee that only the appropriate pixels obey the appropriate commands. Finally, there

are four End-of-column Command Sets each corresponding to one of the four End-of-

column Registers. These registers store interesting BC0 numbers and via their Command

Set instruct their associated pixels.

There are four types of commands sent from the End-of-column Logic to the Pixel Cells:

1. Idle (00) - If a particular pixel is Empty, then the Idle Command is ignored. If the

pixel is Full (i.e. has stored a hit), then the Idle Command instructs the pixel to wait.

2. Reset (01) – If a particular pixel is Empty, then the Reset Command is ignored. If the

pixel is Full, then the Reset Command instructs the pixel to clear its hit registers and

return to the Empty state.

3. Output (10) – If a particular pixel is Empty, then the Output Command is ignored. If

the pixel is Full, then the Output Command instructs the pixel to request the bus. When

6

the pixel has the bus, then its data is driven to the End-of-column Logic, and the pixel

resets itself to the Empty state.

4. Write (11) – If a particular pixel is Empty, the Write Command tells the Pixel Cell that

incoming hits from the pixel detector should reference themselves to the End-of-

column register that is giving this Write Command. When a hit arrives, the Pixel Cell

then activates the Fast OR to alert the End-of-column register that this BC0 is

interesting. It also changes its internal state to Full, and shuts off all commands except

those coming from the register currently sending this Write Command. If this Pixel

Cell is already Full, then the Write Command is ignored.

7

A Detailed Description of a Hit from the Pixel Cell’s Perspective

The above figure details the majority of the Pixel Cell logic. Command0, Command1,

Command2, and Command3 as well as Accept are generated by the End-of-column Logic

and driven up the column. First, the rising edge of a new hit from the Pixel Cell’s

discriminator will make “NewHit” equal to “Accept”. If the End-of-column Logic has

activated Accept (i.e. made it a Logical 1), then NewHit is activated by the firing of the

D

Clk

Q

~Q

Res

NewHit S

R

Q

~Q

S

R

Q

~Q

S

R

Q

~Q

S

R

Q

~Q

Command0

Command1

Command2

Command3

PreviousHitb

InterestingHit

Accept

AnaNewHit

GN

GP
i o

GN

GP
i o

HFastOR

8

discriminator. If Accept is set to a Logical 0, then nothing from the analog section of the

Pixel Cell can affect the digital section.

PreviousHitb is set to a Logical 1 if and only if the Pixel Cell is in the Empty State. If the

Pixel Cell is Full, then PreviousHitb is a Logical 0 and the signal “ InterestingHit” will

remain inactive (Logical 1) regardless of activity in the analog section. It is by this

mechanism that a Full Pixel Cell ignores subsequent Write Commands. In other words, if

the Pixel Cell is Full, then even if another End-of-column register presents a Write

Command to the Pixel Cell and there is another hit on the pixel detector causing the

discriminator to fire, the fact that PreviousHitb is a Logical 0 will prevent this new hit from

disturbing the state of the Pixel Cell.

If there is no previous hit (i.e. the Pixel Cell is Empty) and the End-of-column Logic

indicates that the Pixels should accept new hits (i.e. Accept is set to Logical 1) and one of

the Command Sets is presenting a Write Command to the Pixel Cell and if the

discriminator fires, then InterestingHit will become active and the SR flip flop associated

with the End-of-column register presenting the Write Command will activate. This will

cause PreviousHitb to become a Logical 0, preventing future hits from disturbing this

logical state. At the same time, the nmos transistor that pulls the HFastOR line low will be

activated. The Fast OR (a.k.a. the HFastOR) is a distributed pseudo-nmos NOR gate in

which a single pmos transistor (located in the End-of-column Logic) pulls the Fast OR line

high unless any nmos transistor (one located in each of the Pixel Cells) pulls the line low.

Note that the HFastOR signal is not activated until the record of the hit is already stored in

the Pixel Cell, and that signal will remain active until the End-of-column register removes

9

the Write Command. This guarantees that the End-of-column Logic has the time to

acknowledge that a hit occurred. However, it also means that if the End-of-column Logic

mistakenly re-asserts the Write Command to a Full Pixel Cell, the HFastOR will

automatically fire. The Pixel Cells only know if they have been hit. They do not

understand time in any way. It is impossible to insert in the Pixel Cell the extra logic

necessary for the Pixel Cell to be aware that it was hit in a particular BC0 crossing unless

the BC0 clock is driven up the column to all pixels. This would take up space and it would

be an extra noise source to the analog front end. Therefore, the End-of-column Logic must

be smart enough not to re-assert the Write Command until it has asserted a Reset Command

or an Output Command.

The figure shows only two CMOS transmission gates on the right. In fact, there are two for

every Command Set. As the figure indicates, when a hit is stored in the Pixel Cell only two

of the eight transmission gates are activated. These are the two associated with the End-of-

column register providing the Write Command when the hit occurred. It is by this

mechanism that the Pixel Cell dynamically associates itself with only one End-of-column

register. After the association has been made, the Pixel Cell ignores the commands of all

other registers except the one with which it is associated.

Finally, the Pixel Cell is dumb. If more than one End-of-column register is asserting the

Write Command, then the Pixel will associate itself with more than one End-of-column

register. The consequences of this are unpredictable, and the Pixel Cell does not have the

space to provide the logic necessary to make sure such problems do not occur. Therefore, it

10

is up to the End-of-column registers to make sure that only one Write Command is issued

at a time.

A Detailed Description of Outputting from the Pixel Cell’s Perspective

The above figure shows the eight CMOS transmission gates on the left, only two of which

will be active when the Pixel is Full and none of which will be active when the Pixel is

Empty. When active these transmission gates will pass the commands of the associated

End-of-column register on to the rest of the Pixel Cell. When the Output Command is

given, two things happen. First, in a manner identical to the HFastOR, the Pixel Cell

activates an RFastOR to indicate to the End-of-column Logic that there is data to be output.

D

Clk

Q

~Q

Res

GN

GP
i o

GN

GP
i o

GN

GP
i o

GN

GP
i o

GN

GP
i o

GN

GP
i o

GN

GP
i o

GN

GP
i o

Command0[0]

Command0[1]

Command1[0]

Command1[1]

Command2[0]

Command2[1]

Command3[0]

Command3[1]

TokenOutTokenIn

PixelReset

MasterReset

GBus

Read Clock

Output Command Decoding

Reset Command Decoding

I_Need_Bus

I_Need_Bus_bar

GetBusEnable

Command Reset

Token Reset

11

Second, the Output Command Decoder will activate the Token and Bus Control Logic via

the I_Need_Bus signal. When this signal is active, the TokenOut is forced to a Logical 0,

and when the TokenIn is active (i.e. when the Column Token has arrived), then the

GetBusEnable signal is activated. At the next rising edge of the Read Clock, the Pixel will

have control of the bus, and its address will be driven for one Read Clock cycle. The act of

getting the bus also forces the Pixel Cell to reset itself via the Token Reset signal. This will

immediately revert the Pixel Cell to the Empty state making the I_Need_Bus signal

inactive. This will release the Pixel Cell’s hold on the RFastOR signal and it will release

the Token to fall to the next active pixel (i.e. TokenOut will become a Logical 1). Note that

the Token dropping occurs while the Pixel Cell’s data is being driven. At the next rising

edge of the Read Clock, this Pixel Cell will release the bus because, due to the reset, it

thinks it no longer needs the bus. This mechanism of pipelined token passing and self

resetting is what enables FPIX1 to output new data at each rising edge of the Read Clock.

If the Pixel Cell had no data, then the Output Command would have been ignored, and the

TokenIn signal would have immediately caused TokenOut to be driven to a Logical 1 (i.e.

the Column Token would have passed right through to the next active Pixel Cell).

A Detailed Description of Resetting from the Pixel Cell’s Perspective

As seen in the above figure, there are three ways to reset the Pixel Cell. The first happens

when the End-of-Column Logic issues a Reset Command. This is called a Command

Reset. The second happens when the Pixel Cell’s Data is output. This is called a Token

Reset. The third happens when a Data or Master Reset is activated.

12

In all three cases, Resetting causes the following:

1. All of the SR flip-flops in the Pixel Cell are reset. These are the flip-flops which

associate the Pixel Cell with one of the four End-of-column registers

2. The input D-flip-flop is reset. (This is the flip-flop ensures that only the rising edge of

a New Hit activates the Pixel Cell logic. It also enables the End-of-column Logic to

force the pixels in the column to ignore new inputs via the Accept signal.)

3. The Pixel Cell is forced into the Empty state and PreviousHitb is set to Logic 1. This

effectively opens the door for new inputs.

4. The Pixel Cell, which prior to the reset had been ignoring all but one register, is now

free to look at all registers again.

It should be reiterated that the Pixel Cell is dumb. It does not care why or how it got the

commands it got. It simply responds to them. Therefore, if the Pixel was in an Output

mode (i.e. if the End-of-column Logic was driving an Output Command up the column)

and then the command was switched to a Reset Command, the Pixel Cell would reset itself

in about 1 ns, even if the Token had already arrived. Therefore, the End-of-column Logic

must take care not to allow spurious commands to be driven up the columns.

Interface Limitations as dictated by the Pixel Cell

To summarize what was stated previously, several limitations are placed on signals from

the End-of-column Logic by the Pixel Cell. They are:

13

1. One and only one End-of-column register may issue a Write Command at any given

time. The consequence of not obeying this rule is that a Pixel Cell could

simultaneously associate itself to two or more End-of-column registers if more than

one Write Command were given.

2. Once the End-of-column register acknowledges a Fast OR signal (i.e. the arrival of a

new hit) by removing the Write Command, it cannot re-issue a Write Command until it

has issued a Reset Command or an Output Command or until the outside world has

activated the Data Reset. The consequence of not obeying this rule is that spurious Fast

OR signals would be sent to the End-of-column registers if Write Commands were

issued to Pixel Cells in the Full state.

3. Care must be taken with the Reset Command. It is the fastest command, taking only

1ns to reset a Pixel Cell. Therefore, spurious signals on the command lines must be

avoided.

14

The End-of-column Logic

The above figure shows the basic block diagram of the End-of-column Logic. It consists of

one Priority Encoder and four End-of-column Sets. The End-of-column Sets themselves

consist of one End-of-column register for holding a BC0 number, two digital comparators

for checking the held BC0 number against the Current BC0 number (CBC0) and the

Requested BC0 number (RBC0), and one End-of-column State Machine for generating the

End-of-Column Set

End-of-Column Set

End-of-Column Set

End-of-Column Set

Priority Encoder

Picked

Picked

Picked

Picked

Full

Full

Full

Full

Command

Command

Command

Command

HFastOR TokenOut

CBC0

RBC0

15

appropriate commands. In addition, there is one End-of-column Mask Shift register for

storing the CBC0 mask. This will be explained below.

The Priority Encoder

The Priority Encoder is a very straightforward state machine and it is shown in the above

figure. First, it changes state with the BC0 clock. Second, under typical operation (i.e. if at

X1111HFastOR=0

Pick B

HFastOR=0

Pick C

HFastOR=0

Pick D None FreePick A

HFastOR=0

Bit 1: HFastOR

Bit 2: A Full

Bit 3: B Full

Bit 4: C Full

Bit 5: D Full

1X0XX

1X10X

1X110

1X111

10XXX

11X0X

11X10

11X11

10XXX

110XX

10XXX

110XX

X0XXX

X10XX

1110X

X111X

111X1

X110X

X1110

111X0

16

least one register is free) the Priority Encoder is not allowed to change state unless there is a

hit (i.e. if HFastOR is a Logical 1). Third, if there is a Hit, the present state cannot be the

next state because, by definition, the present register will be occupied. Finally, given that

the above rules are obeyed, the priority encoding is as follows:

1. If register A is free, register A is the next pick.

2. If register A is full and register B is free, register B is the next pick.

3. If registers A and B are full and register C is free, register C is the next pick.

4. If registers A, B, and C are full and register D is free, register D is the next pick.

5. If none of the registers are free, then NoneFree is activated, and no registers are picked.

It is assumed that with no free registers, no End-of-column Sets will be presenting a Write

Command to the column. Consequently, no Hits will be recognized by the End-of-column

Logic since the HFastOR signal is activated by the simultaneous presence of a new hit and

a Write Command. Therefore, when no registers are free, the End-of-column Priority

Encoder ignores the HFastOR line and changes state as soon as there is a free register.

The End of Column State Machine

17

The End-of-column State Machine is the only Mealy State machine in the entire chip. The

others (Priority Encoder, Column Readout, Chip Readout, CBC0 and RBC0 counters) are

all Moore State machines. The difference is that the outputs of Moore state machines

depend solely on the present state of the machine whereas the outputs of Mealy state

machines depend both on the present state of the machine and on the present states of the

asynchronous inputs to the machine. This choice was dictated by the fact that new hits

must be tagged according to the current BC0 number. This means that they are recorded

Empty

FullOutput Done

Picked and NoHit/11

Not Picked/00

Picked and Hit/11CBC0eq and

not RBC0eq/01

RBC0eq and

Not Done/10Done/00

Not RBC0eq and

Not CBC0eq/00

18

based on the BC0 clock. However, they are output based on the Read Out clock. These

two clocks cannot be assumed to be the same frequency or even to be synchronous.

Therefore, a Moore State machine would have had to change state on two different clock

edges, which is clearly impossible. The Mealy State machine, on the other hand, can be

made to change state on only one clock edge with provisions made for dealing with the

seemingly asynchronous signals arriving in time with the second clock edge. Finally,

provisions also need to be made so that the column can understand that it is done reading

out, but the rest of the chip is not yet done.

The above state machine accomplishes these purposes. First, transitions from Empty to

Full and from Full to Empty occur on BC0 clock edges. Transitions from Full to Output

Done can occur at any time. Transitions from Output Done to Empty occur on BC0 clock

edges. Output Done, therefore, acts as a pseudo-Full state. The state machine thinks that it

is Full, and therefore the Priority Encoder cannot pick the register for the storing of new

hits. However, in the Output Done pseudo-state, the End-of-column Logic will relinquish

control of the buses thereby allowing the requested BC0 counter to be incremented. This

allows multiple BC0 numbers to be requested within the same BC0 cycle.

Note that if a register is empty and not picked by the Priority Encoder, the command output

by the End-of-column State Machine is Idle. If, however, the register is picked, the

command becomes Write, and this is maintained until either the Priority Encoder picks

another register or until the next positive BC0 clock edge after a Hit is recorded. Recall

that the Pixel Cell does not know anything about time and it does not care who is sending it

the Write Command. It is the responsibility of the Pixel Cell, when hit, to maintain the

19

HFastOR signal until the Write Command is removed. It is the responsibility of the

Priority Encoder to make sure that the picked register does not change until a Hit is

registered. Finally, it is the responsibility of the End-of-column State Machine to make

sure that the Write Command is not removed until the end of the BC0 cycle. It is by this

mechanism that all Pixel Cells hit within the same BC0 clock period are associated with the

same End-of-column Register.

During output, it is the responsibility of the End-of-column Logic to supply the column

with the Read command and the token. When the token drops out of the bottom of the

column, then the output is done and the State Machine changes from Full to Output Done.

This state must be maintained until the next rising edge of the BC0 clock when the state

will change to Empty.

The End-of-column Register, Comparators and Mask Register

The End-of-column Register is a set of six asynchronously resettable, positive edged D flip-

flops. Their reset line is attached to the Data Reset signal. They latch the current BC0

number at the rising edge of the Full signal from the End-of-column state machine.

The End-of-column Comparators are just a set of exclusive or gates that ultimately yield an

equal or not-equal signal. There are two comparators per End-of-column Set. One is for

comparison of the BC0 number stored in the End-of-column Register with the Requested

BC0 number. The result of this comparator is the RBC0eq signal that triggers an Output

Command from the End-of-column State Machine.

20

The second comparator is for the comparison of the stored BC0 number with the current

BC0 number. The result of this comparator is the CBC0eq signal that triggers a Reset

Command from the End-of-column State Machine. Also associated with this comparator is

the End-of-column Mask Shift Register. This is a six bit wide set of asynchronously

resettable positive-edge triggered D flip-flops arranged serially as part of a scan path. A

Logical 1 in any bit of the Mask Shift Register causes all of the current BC0 comparators to

ignore that bit in their comparisons. By this mechanism, it is possible to arbitrarily set the

reset time lag. For instance, if only the last two bits of the Mask Shift Register are set to a

Logical 0 and all the other bits are set to a Logical 1, then the End-of-column State

Machine will reset itself four BC0 clock cycles after it receives a hit. The Mask Shift

Register is reset by the Program Reset signal, and it resets itself to all Logical 0 signals.

The RBC0eq signals from each End-of-column Set are combined to form the ColHasData

(Column Has Data) signal. In turn, the ColHasData signals from each End-of-column

Logic cell are combined to form the ChipHasData signal. This signal is used by the Chip

Logic to determine if the chip must grab the external bus to transmit data.

A Detailed Description of a Hit from the End-of-column Logic’s Perspective

If there are no free registers, then NoneFree is active, and the Priority Encoder is not

pointing to any register. Moreover, the End-of-column Logic will set the Accept signal to a

Logical 0. This will prevent any hits from being accepted by any Pixel Cells in the column.

If there is at least one free register, the Priority Encoder will be pointing to one and only

one End-of-column Set. This End-of-column Set is now said to be Empty:Next, and the

21

State Machine in this Set will output a Write Command. As time passes, the current BC0

counter will advance in the Chip Logic, but as long as there is no hit, the state of the

Priority Encoder and the Empty:Next End-of-column Set will not change.

When there is a hit somewhere in the column, the HFastOR will be activated. By this time,

the hit Pixel Cell has already associated itself with the Empty:Next End-of-column

Register, but, nevertheless, it will continue to assert the HFastOR until the Empty:Next

End-of-column State Machine removes the Write Command. If other Pixel Cells in the

column become active between this point in time to the next rising edge of the BC0 clock,

those Pixel Cells will also associate themselves with the Empty:Next End-of-column

Register. These newly hit Pixel Cells will also try to assert the HFastOR signal, but since it

is already active, this will have no effect on the End-of-column Logic. Finally, the Priority

Encoder, which also observes the state of the HFastOR signal, will be aware that a hit has

occurred, and the next state of the Priority Encoder will be set up.

At the next rising edge of the BC0 clock, the Empty:Next End-of-column Set will become

Full:Idle and it will remain in this state for at least one BC0 clock cycle. In this state, the

End-of-column State Machine will change its command from Write to Idle. This will have

two effects. First, it will cause the End-of-column Register to latch the current BC0

number. Second, it will cause the hit Pixels to stop asserting the HFastOR signal.

Also at this next rising edge of the BC0 clock, the Priority Encoder will point to another

End-of-column Set, making it the new Empty:Next Set.

22

A Detailed Description of Outputting from the End-of-column Logic’s Perspective

There is a second End-of-column State Machine called the Column Output Machine. It has

four states. When the End-of-column Logic is not outputting data, it is said to be in the

Silent State. When it is outputting data, it is said to be Talking.

As the Requested BC0 number changes, in either Triggered or Non-triggered mode, it is

continually being compared to all of the BC0 numbers stored in all of the End-of-column

Sets in all of the columns simultaneously. If there is a match and that register is Full, then

the End-of-column Set immediately switches to Full:Output. The Output Command is sent

up the column to all pixels associated with this register. Meanwhile, the ColHasData signal

is activated by the End-of-column Logic cell, and this, in turn, activates the ChipHasData

signal.

Output Command Decoding

Command0

Command1

Command2

Command3

ColHasData

Col Token

23

The above figure shows how the Output command signals are decoded in the End-of-

column Logic just as they are in the Pixel Cells. This decoded signal is combined with the

ColHasData signal and then driven up the column as the Column Token. This somewhat

elaborate scheme for generating the token ensures that the Column Token cannot arrive at a

Pixel Cell before that Pixel Cell realizes that it needs the Column Token.

At this point, the End-of-column Logic waits for the arrival of the Row Token. This Row

Token is created by the Chip Logic when it sees the ChipHasData signal. When the Row

Token arrives, the Column Output Machine switches from Silent to Talking, and the Read

Clock is permitted to pass up the column to the Pixel Cells. Recall from the Pixel Cell

section that the pipelined Column Token passing logic will pass the Column Token to the

first Pixel Cell with data, but that that cell will not take the bus until the next rising edge of

the Read Clock. The action of the Column Output Machine prevents simultaneous access

of the data bus by multiple columns.

When the last Pixel is read, the RFastOR returns to a Logical 0, and several things happen.

First, the End-of-column State Machine switches to the Output Done State. Second, the

Column Output Machine passes the Row Token to the next column with hit Pixel Cells in a

manner similar to the pipelined passing of the Column Token. Third, ColHasData becomes

inactive. This last event facilitates the release of the ChipHasData signal that, in turn,

allows multiple requested BC0 numbers to be reviewed in each BC0 cycle.

24

The Chip Logic

The above figure shows the basic layout of the Chip Logic. It consists of two counters, a

multiplexer and a state machine. The first of the counters is the current BC0 counter that is

nothing more than a simple counter. It changes state at the rising edge of the BC0 clock,

and at the Data Reset signal, it resets to zero.

The second counter is more complicated. First, on the Data Reset signal, it resets to 2. It

changes state on the rising edge of the Read Clock. However, it only changes state under

certain conditions. First, it does not change state if the ChipHasData signal is active.

Second, it must remain a certain distance from the current BC0 number. Therefore, every

1

BC0 clk

1

Read clk f

CBC0

Triggered/Non-Triggered

External RBC0

RBC0

Chip State Machine

Row Token

Chip Token

25

time it changes state, it adds its value to a user defined RBC0 Lag Number. If the

Requested BC0 number plus the RBC0 Lag number equals the current BC0 number, then

the RBC0 number is not incremented. Of course, if the chip is set to Triggered mode, then

the RBC0 number is generated externally as shown in the figure.

The last element of the Chip Logic is the Chip State Machine. Its state diagram is shown

Silent:
Idle

Silent:
TokenOut

Talking:
Chip ID

Talking:
Data

ChipToken

AND

ChipHasData

RowTokenOut

ChipToken

AND

ChipHasNoData

RowTokenNotOut

26

below. In essence, it is the same as the Column Output Machine with a few minor

modifications. First, the Silent:TokenOut State was added because the Chip Token must

always be passed even if there is no data available. Second, the Talking state was divided

into Talking:ChipID and Talking:Data. This is to accommodate the requirement that it

output its Chip ID and the BC0 number before it begins to output data. This is ultimately to

help the outside world route the data as necessary.

Verilog Simulations

The following Verilog simulations are all performed on a 4x4 matrix of Pixel Cells. Each

column has its own End-of-column Logic, and the matrix itself has its own Chip Logic. All

circuits have been modeled to the transistor level, including the Fast OR circuits (HFastOR,

RFastOR and ChipHasData). Delays have been specified for all primitives such as nand,

nor, and not. Where required, such as in to Fast ORs and the token passing logic, they have

been explicitly specified. Therefore, the timing results as determined by Verilog are

reasonably accurate.

The Chip ID is preset to 02. It can be found in the first two hexadecimal bits in the first

word output by the matrix. The second two hexadecimal bits in the first word are the BC0

number of the event. The first two hexadecimal bits of the remaining data words are the

column ID. The four column IDs used were 01, 02, 04, and 08. The second two

hexadecimal bits in the remaining data words are the row IDs of the pixels. The four Row

IDs used are 33, f0, 55, and 0f.

27

The first four simulations show single pixel hits. The first is a hit to the first column, first

row. The second is a hit to the second column, second row. The third is a hit to the third

column, third row. Finally, the fourth is a hit to the fourth column, fourth row.

28

The second set of simulations show multiple hits in one column. In fact, each simulation

shows one full column being filled.

29

The third set of simulations show multiple columnar hits. The first shows one hit pixel per

column. The second shows all four pixels hit in all four columns.

30

The fourth set of simulations shows multi-time slice hits. The first shows two different

pixels hit in two successive time slices.

The second simulation was a pleasant surprise. It shows all sixteen pixels hit in two time

slices. The first time slice is successfully output. All seventeen data words make it out.

However, the second time slice outputs only ten words – all of the first column, all of the

second column and the first two Pixel Cells of the third column. At first, it was believed

that there was some sort of error until it was realized that the second hit occurred during the

readout of the first time slice. Therefore, the as the simulation indicates, the last two Pixel

Cells of the third column and the entire fourth column were full during the hit.

Consequently, the pervious hit protection of the Pixel Cells prevented the new hits from

overwriting the old.

The third simulation is a repeat of the second simulation with the second sixteen hits

arriving somewhat later. As the figure indicates, all seventeen data words make it out for

both time slices.

31

