ESE-SVX-971016

SVX3 Diagnostics Document

Version 1
Oct. 16, 1997

Wayne Koska

Introduction

The SVX3 system comprises the SVX3 chip and the electronics modules required to read it out and transfer the data to the event builder. These modules consist of the Port Card, the Fiber Interface Board (FIB), Fiber Interface Fan-out board, the VME Readout Buffer (VRB), the VME Readout Buffer Fan-out, and the Silicon Readout Controller (SRC). The diagnostics required to debug and test this system include the General System Test Module (GSTM) associated diagnostic code required to operate each of these modules for independent and system tests. A diagram of the SVXII readout electronics can be seen in figure 1 of the GSTM preliminary design report�.
	We plan to model the upper level user interface for the diagnostics after the current SVXII test stand software�. This is a Tcl/Tk interface. This user interface interacts with the real-time operating system VxWorks via RPC calls. VxWorks may communicate to individual VME cards either using the vmeAccess API or through custom vme code written for each module. Software will be written to test/debug each module individually and through the GSTM. Tests will be described in the following sections. This document will evolve as required tests are specified.

SVX3 Board Level Tests

Port Card - At present, the Port Card will not be tested on an individual basis at the level of these diagnostics. It will be tested as part of the system, utilizing the GSTM and additional electronics modules.

Fiber Interface Board (FIB) - Kerry Woodbury has written the individual board diagnostics, utilizing a Microsoft Windows user interface, with RPC calls to the vme master (an mvme16x) using Vision (Versatile I/o Software Interface for Open-bus Networks). The low level FIB functions are shared by the board diagnostic routines and the comprehensive diagnostic test package using a Tcl/Tk interface.

FIB Diagnostic Tests:
In addition to a FIB, the following VME driven tests require a FIB Fanout module, a GSTM with a GLINK receiver daughter card, and fiber optic cable. VME access to the FIB is A32/D32 using the Extended Non-Privileged Program Access address modifier “A” in the address range 0 - 0xA80000.

The tests are designed to verify basic operation in the two major functional blocks of the FIB which are the control path and the pipeline path.

FIB Control Path Tests:

Upload and Download FIFOs

Reset serial FIFOs (Download FIFO is parallel to serial, Upload FIFO is serial to parallel)
Select the internal loopback path between the FIFOs
Write a 8 bit data value to the Download FIFO
Clock the command through the FIFOs with vme commands
Read the 8 bit Upload FIFO value and compare

Command and Log FIFOs

Disable command processing
Enable manual strobe of commands into the Command/Log FIFOs
Enable vme command entry
Reset the FIFO
Write test command
Strobe the command into the Command/Log FIFO via vme command
Read FIFO and compare with test command

Address Controller

Enable manual strobe of commands into the Command/Log FIFOs
Enable vme command entry
Reset the Command FIFO
Write a NOP test command, 0x0A used now
Enable command processing (the Address Controller)
Strobe the command into the Command/Log FIFOs
Read back the last command to Address Controller and compare

SVX Initialization

Reset serial FIFOs
Select the internal loopback path between the Upload and Download FIFOs
Write a 8 bit data value to the Download FIFO
Set the Download count register with the data size (bits -1)
Enable manual strobe of commands into the Command/Log FIFOs
Enable vme command entry
Reset the Command FIFO
Enable command processing
Write the initialization command 0x08
 Strobe the command into the Command/Log FIFOs
 Read the 8 bit Upload FIFO value and compare

FIB Pipeline Path Tests:

Pipeline Data Pattern

Write pedestals and gain (this is expanded below)
Enable vme control of pipeline input FIFOs
Reset pipeline input FIFOs
Write test data buffer to all pipelines
Enable pipeline data processing
Read each pipeline’s Glink output FIFO and compare with test data buffer

FIB Control Protocols
The following commands are illustrated using the low level FIB API. Function parameters are omitted for clarity.

VME command write:

fib_VmeManualStrobeEnable()
fib_VmeCommandEnable()
fib_VmeCommandWrite()
fib_CommandProcessingEnable()
fib_VmeCommandStrobe()

Pedestal and Gain write:
(This control sequence is encapsulated in the test support routine fib_pedcalcRAMWrite().)

fib_CommandProcessingDisable()
fib_VmeFifoControlRequest()
fib_PipelineTristateEnable()�setup buffer A with pedestals
setup buffer B with gain and table overrides
loop over pipelines
	fib_PedRamBlockWrite(Buffer A)
	fib_CalcRamBlockWrite(Buffer B)
fib_VmeFifoControlRelease()
fib_PipelineTrstateDisable()

System Data Acquisition:

fib_MasterReset()
fib_ControlClock1Enable()
fib_ControlClock2Enable()
fib_MaxReadoutRegWrite()
fib_VmeFifoControlRelease()
fib_PipelineTristateDisable()
fib_ForceDataProcessing()

Operation of the FIB microsequencer - The FIB microsequencer receives a 5-bit code (implying a maximum of 32 possible instruction sequences) from the SRC (see � REF _Ref393256340 * MERGEFORMAT �Table 1�). This code is processed and queued in the command FIFO. It is used to select a sequence of 32 bit commands stored in the microsequencer RAM. Each 32 bit instruction in this sequence consists of 11 bits which are passed to the port-card and 21 bits which are used for local FIB command and control.

FIB Command Name�FIB Command Code�SVX3 Diagnostic Code Definition Name��No Op�0x0���Readout�0x2 (will be 0x5)���Digitize�0x6���Table � SEQ Table * ARABIC �1� FIB Command Codes

FIB Fanout Board (FFO) - (Note: as of 10-16-97, the FIB Fanout board is in the process of being modified. The registers and their addresses as shown below will probably change.) The FIB Fanout board is being designed and built by John Anderson. The Fib Fanout board receives control and timing signals from the SRC via G-Link and redistributes them across the J3 back plane of a FIB vme crate for use by the FIBs. The Fib Fanout always resides in slot 15 of the crate, with up to 6 FIBs in slots immediately to its right and left. The FIB Fanout can service a maximum of 12 FIBs. It utilizes geographic addressing when available. The FFO is an A32/D32 VMEbus slave and responds to the 0x0A and 0x09 AM codes. Two registers and two fifos are available to the user on the board. Their location and type are summarized in � REF _Ref393256673 * MERGEFORMAT �Table 2�.
�
Address�Name�Type�Comments��Fib Fanout Registers�����0�Configuration �Read/Write���4�G-Link/FIB Status (R)
Fake Data Fifo (W)�Read/Write�Read and write cycles are not related, see below��8�Error Trace Fifo�Read only���
Table � SEQ Table * ARABIC �2� FIB Fan Out Registers and Fifos

The configuration register is used to configure the Fib Fanout. The function of each bit is described in � REF _Ref393256797 * MERGEFORMAT �Table 3�. This table and those associated with the G-Link/Fib Status, Fake Data Fifo and Error Trace Fifo have been extracted from the FIB Crate Fanout Module Document�.

��Bit #�Name�Read/Write interpretation��31..24�MODULE_ID�Upon read, the SVX ID of the Fanout. No effect upon write.��23�FORCE_RESET�Writing a 1 to this bit forces the FIB Fanout to create a SYSRESET* pulse. Needless to say, reading this bit after writing to it is impossible.��22�RUN_MODE�Writing a 1 to this bit sets the Fanout in to Run mode, identical to having received the RUN signal from the SRC.��21�CLOCK_SOURCE�When the module is in the Initialize mode, writing this bit to a 1 sets the clock source to the GLINK and writing a zero sets the clock source to the internal oscillator. Reading this bit at any time indicates where the clock is sourced. The power-up default is the internal oscillator.��20�RESET_EFIFO�Writing a 1 to this bit clears the Error FIFO.��19�RESET_GLINK�Writing a 1 to this bit resets the GLINK receiver.��18�SEND_FAKE_DATA�Writing a 1 to this bit causes the fake GLINK data previously loaded from VME to be issued through the system at full system speed. Once the FIFO of fake data is exhausted, the Fanout will continue to send MCLK and SYNC pulses, but all other data bits will be forced to zero. Reading this bit returns the status of the fake data FIFO empty flag.��17�FORCE_FATAL_ERR�Writing a 1 to this bit forces the FATAL_ERROR signal to be sent out the LVDS link, for test purposes. ��16�FORCE_NONFATAL_ERR�Writing a 1 to this bit forces the NONFATAL_ERROR signal to be sent out the LVDS link, for test purposes��15�DALLAS_BUSY�This bit is 1 when data is being transferred into or out of the SPFIFO. When this bit is set the SPFIFO is not available to VME.��14..10�RESERVED�These bits are reserved for future use.��08�ENABLE_WATCHDOG�Writing a 1 to this bit enables the AS* watchdog timer.��07
06
05
04
03
02
01
00�Bunch Xing error map
RDQ error map
CMD/XQT error map
ADV_PIPE error map
L1A error map
PIPE_RD2 error map
SYNC error map
-5.2 volt fail error map�Writing a 1 to each bit maps the error to a FATAL ERROR.
Writing a 0 to each bit maps the error to a NON_FATAL ERROR.
Upon read, these bits are ‘1’ if that error is currently
present and ‘0’ if the error is not present.��
Table � SEQ Table * ARABIC �3� Configuration Register in FIB Fan Out

It should be noted that all bits are sticky, except 19, 20 and 23. It should also be noted that bit 15 refers to a temperature sensor that is no longer included on the board.

The GLINK/FIB Status Register is summarized in � REF _Ref393257117 * MERGEFORMAT �Table 4� and � REF _Ref393257128 * MERGEFORMAT �Table 5�.

Bit�Meaning��31�FIB ERROR bit from FIBs��30,29,28�3-bit FIB STATUS from FIBs��27�CAV* status from GLINK��26�DAV* status from GLINK��25�LINKRDY* status from GLINK��24�FLAG status from GLINK��23�FF status from GLINK��22�ACTIVE status from GLINK��20,21�STAT1, STAT0 status from GLINK��19..0�20-bit data from GLINK��
Table � SEQ Table * ARABIC �4� GLINK/FIB Status Register bitmap (read cycles only)

Bit(s)�Meaning��31..24�Unimplemented for write��23..20�Writable, but have no function��19..0�Fake GLINK data��
Table � SEQ Table * ARABIC �5� GLINK/FIB Status Register bitmap (write cycles only)

G-Link Status information can be obtained from this register, along with the last G-Link data word sent. Write cycles to this register address inserts fake data into the 8K(?) deep test fifo. This data can then be emptied at full speed by setting bit 18 in the Configuration register. This data should pass through the system as a normal control sequence and should also appear in the Error Trace fifo. These fifos will be tested for proper functioning by comparing the data input to the Test fifo against that read out from the Error Trace fifo.

The G-Link Error Trace fifo is summarized in � REF _Ref393257400 * MERGEFORMAT �Table 6�.

Bits 31..24�Bits 23..20�Bits 19..0����GLINK Status Bits�Fanout Error Status (binary)�GLINK Data����bit 31�STAT0�0XXX�No error���bit 30�STAT1�1000�Bunch Xing bit error���bit 29�LINKRDY*�1001�RDQ bit error���bit 28�FLAG�1010�CMD/XQT error���bit 27�FF�1011�ADV_PIPE bit error���bit 26�ERROR�1100�L1A bit error���bit 25�DAV*�1101 �PIPE_RD2 bit error���bit 24�CAV*�1110�SYNC bit error�����1111�-5.2 volt supply failed���
Table � SEQ Table * ARABIC �6� The FIB Fan Out Error Trace Fifo
The Error Trace Fifo records G-Link data words immediately preceding and following a data transmission error. It can also be used to verify proper data transmission by sending a known data sequence via the G-Link and reading back the data stored in the Error Trace fifo and comparing.

FIB Fanout Tests

Several FFO functions have been written that allow the user to read and set the Configuration and G-Link/Fib status registers and to write data (either a standard pattern or from a file) to the Test fifo, to send it and to read it back from the Error fifo and dump it to a text file. A function has also been written to set the FFO into run mode and send G-Link data from a GSTM outfitted with a G-Link Transmitter daughter card to an FFO. The hardware setup for this test may be seen in � REF _Ref393678734 * MERGEFORMAT �Figure 1�. This data can be sampled in the Error fifo and compared to the initial data. A single shot or a loop test may be run. The minimum sequence of instructions for transmitting G-Link data to a Fib Fanout is as follows:

Reset the Fib Fanout G-Link
Set up the G-Link Transmitter. Set the DAV and CAV bits high and send Fill frames. The DAV and CAV bits when using the GSTM are 21 and 22, respectively.
Set the Fib Fanout to Run Mode
Set up the data sequence such that the first 3 words contain a 1 in bit position 19. Then set bit 19 to 0 and insert the data sequence. The initial transition of bit 19 sets the receiver in the Fib Fanout into accept data mode. The receiver will consider all subsequent transmissions as data.
When finished transmitting data, set the Fib Fanout Run/Init bit back to Init.

When the FIB Fanout detects an error in the command sequence being sent from the SRC or the GSTM emulating an SRC, it sets an error flag and stores data in the Error Fifo until it is full. The Error Fifo is 8K deep and, if the FFO has been running for some time prior to the error, a record of approximately 1000 pre-error commands should be stored also. A set of files has been generated containing all the possible errors the FFO should detect. These are labeled FFO1 - FFOx, and reside in SVX3\Fanout. The files are originally generated using Waveformer, and have a .sig suffix. A function is utilized to translate the .sig file into a file that conforms to the GSTM file format described below, having a .glk suffix. A FFOx file is specified by naming it under the “pattern” entry in the FFO configuration file line. If a non-standard file is desired, it can also be named in the configuration file. These files are used in conjunction with the GSTM-FFO loop test. If an FFOx file is specified, a function will be called to check whether a .glk file exists. If not, a .sig file will be searched for and translated. Note: the .glk files have all comments stripped out, so it is a good idea to keep the .sig files also. If a non-standard file is specified, it will also be searched for and translated. Once the translation is completed, the file will be loaded using the standard GSTM fifo loading functions. The GSTM-FFO loop test runs. When it is stopped, the FFO Error Fifo can be read out and the trapping of the correct error can be verified.
� EMBED Designer.Drawing.6 ���
Figure � SEQ Figure * ARABIC �1� Block Diagram of the FIB Fanout Test Setup

VME Readout Buffer (VRB) - The VRB is being designed by Mark Bowden and Ted Zmuda. Board level diagnostic tests will consist of writing data patterns to and reading them back from registers and memory. No board level test plan has yet been sketched out by the designers. System tests will utilize the GSTM.

The VRB address space is summarized in the following table, derived from documentation provided by Mark Bowden. All registers are 16 bit, single word read/write and should be accessed using either A32/D16 (AM = 09) or A24/D16 (AM = 39). The VRB address space is 0-3FFF (offset from the base address) when using 32 bit addressing, with a total of 4K words. D0 uses 24 bit addressing in a non-standard way, resulting in an address space of 0-FFF, with a total of 1K words.
Address�Name�Type�Comments��Control Registers��0�Module Type Code�Read only�(VRB = 3)��2�VRB control��(Not yet implemented)��4�Global byte count�Read only���6�Global status�Read only���Message Registers��20���Not used��22�Readout Buffer No.��(val = 0 - 31)��24�Pipeline Capacitor No.����26�Bunch Crossing No.����28�Scan Buffer No.��(val = 0-31)��2A�Event No.����2C-3E���Reserved��Monitor Fifo Registers��40�Monitor Channel��(val = 0-9)��42�Byte Count����Memory��1000-1FFF�VME/processor Communcation��Not yet implemented *��2000-2FFF�Control Information��Used internally by VRB**��3000-3FFF�Processor Local Storage��Used internally by VRB**�������* This is intended to be a space where a new program, or set of VRB default values can be download (through VME) and then be written by the VRB on-board processor into its flash memory.

** This space would only need to be read through VME for diagnostic purposes.

VRB Output Data Register

There is only one register accessible for VRB data output. This should be read in block transfer mode only, using A32/D32 (AM = 0B) or A32/D64 (AM =08) or A24/D32 (AM = 3B) or A24/D64 (AM = 38).

0		VRB Output Data FIFO

Note: the address is not important. Any access to the VRB using the above four AM codes, regardless of address, will access this register.

Each VRB board will also contain an on-board processor. The processor will be used for initialization and for application specific tasks, such as acting as controller for the P1394 monitor port. Communication with the on-board processor will be through a mailbox in the shared memory. Self diagnostic tests may also be written to run on this processor. The extent of these self-diagnostics has not yet been determined.

Requested VRB Diagnostic Tests

Simple VME tests:
Vme basic access tests are required, consisting of single word read/writes to dual-port memory, exercising both the A24/D16 and A32/D16 address modes, in the address range 0-3FFF. A simple memory loop test is optional.

A test to check that the processor can transfer information to/from VME through dual-port memory (and display on serial output) will also be needed, but not immediately. This may require some as yet undetermined message handshaking.

Control Logic Application Tests (VME):
Execute the following two loops. Reads and writes of VRB registers are through vme. A terminal connected directly to the VRB will display “processing READOUT message” and “processing SCAN message” after receipt of pertinent messages.

1)	Poll the Status register (6) until "readout busy" (bit 0) is low.
2)	Write the Buffer Number (0-1F) to the Readout Buffer Number register (22). The buffer number should be cycled through all values.
3)	Write the PLC Number (xx) to the Pipeline Capacitor Number register (24).
4)	Write the BC Number (xx) to the Bunch Crossing Number register (26).	
This loop should cycle no faster than once every 20 us.

Scan Loop

1)	Poll the Status register (6) until "scan busy" (bit 1) is low.
2)	Write the Buffer Number (0-1F) to the Scan Buffer Number register (28). Vary which buffers are being read out.
3)	Write the Event Number (xx) to the Event Number register (2A).
4)	Poll the byte count register (4) until the value is non-zero. If it does not change, it is an error condition.
(If Receive Logic has been programmed to generate incremental data, use the byte count to block read the output data register (0). Test that the data is incremental. When the header form has been determined, test this also. Test modes: A24/D32, A32/D32, A32/D64.

This loop should cycle at about once every 500 us.

Control Logic Application Tests (GSTM):

Execute the following two loops. Reads of VRB memory are through vme. A terminal connected directly to the VRB will display “processing READOUT message” and “processing SCAN message” after receipt of pertinent messages.

Readout Loop

1)	Wait for "readout busy" (bit 0 of the 10 bit status bus) low. (can be skipped M.B.)
2)	Write the Buffer Number (100 - 11F) to the command bus.
3)	Write the PLC Number (2xx) to the command bus.
4)	Write the BC Number (3xx) to the command bus.	

Optional (concurrent FIB/GSTM Loop)

1)	Write data to Glink receivers on GRT (this could be simulated by VRB).

Scan Loop

1)	Wait for "scan busy" (bit 1 of the 10 bit status bus) low. (can be skipped-M.B.)
2)	Write the Buffer Number (400 - 41F) to the command bus.
3)	Write the Event Number (5xx) to the command bus.

Optional (concurrent VME Scan Loop)

4)	Poll the byte count register (4) until the value is non-zero.
5)	Use the byte count to block read the output data register (0).

Note: Readout and Scan loops are independent. Polling the status register or waiting for status bus bits can be deleted from the test loops (open loop testing) if enough time (20 us for Read-out loop and 500 us for Scan loop) is allowed between cycles for the operation to complete.

GRT (G-Link Fiber Receiver Transition Board) tests
(requires a VRB and utilizes a GSTM with a G-Link transmitter):

Use a GSTM to drive the GRT G-link input(s) and check Receive Logic event recognition (for Version 0 VRB this will be a partial test with no event format checking other than start and end of event. For Version 1 VRB event formatting is checked. The GRT connects to the vme backplane and is used in conjunction with a VRB. The GRT is reset on power up or when it’s reset input is driven by a VRB. The GRT sends several signals to the VRB that will be read out through a VRB register. These are: CAV*, DAV*, ERROR, LINKRDY and STRBOUT. The initialization process required for establishing lock between the G-Link transmitter and the receiver on the GRT is:

Set the transmitter to 20 bit mode
Set the transmitter flag select to 0 (note that this is opposite of what is done when establishing lock between the GSTM G-Link daughter cards)
Set Fill Frame to 0 (This is mode bit 10 on the GSTM)
Set the CAV and DAV bits high on the data bus (Put three words, with bits 21 and 22 set, into the GSTM transmit fifo and transmit)
Reset the transmitter (Control bit 29 or 31 set to 1, depending on the port used)
Wait 5 ms
Start the transmitter (Control bit 29 or 31 set to 0, depending on the port used)
Wait 5 ms
Set Fill Frame to 1
 Reset the GSTM transmit fifo

When cycling data through the G-Link, the CAV bit should be high always, the DAV bit should be low only when data is actually present. At the end of a data transfer, DAV should be set high and left.

VRB interrupts:

Check VRB/VME interrupt assertion. Requires only that the VME CPU be able to display some kind of message when it receives a VME interrupt (IRQ3).

VRB Fanout Module - No board level diagnostic or test level software is required.

SRC - The required board level diagnostic and test software and who will be responsible for writing it needs to be determined (probably Harvard). I haven’t talked to anyone about this yet.

SVX3 System Level Tests

There are 4 system level tests: the VRB subsystem test, the FIB subsystem test, the FIB-VRB system test utilizing the GSTM as an SRC emulator and the full system test utilizing an SRC. Details for each system test will be given below.

VRB Subsystem Test

Hardware requirement for VRB subsystem testing:

For a full subsystem test, the VRB Fanout module and a GRT will be required in addition to the GSTM mother board and the SRC Emulator and the G-Link Transmission daughter cards. Either an mvme16x running VxWorks or a Bit 3 Transition board will be installed in a VME crate in addition to the GSTM board, the VRB Fanout module and at least 1 VRB board. (To fully test the system, the vme master should be capable of handling 64 bit transfers, implying an mvme 167 or a PowerPC or similar processor.) The SRC Emulator card will emulate the SRC controller and the G-Link Transmission card will emulate the FIB to VRB data link.

Operation of Software for VRB subsystem testing:

� REF _Ref393678959 * MERGEFORMAT �Figure 2� shows the arrangement for testing the VRB with a GSTM emulating an SRC and a FIB-data-source. Note that 13 command lines (0 - 12), driven by the GSTM main transmit fifo, pass to the VRB F/O card. The bit patterns for the commands are listed under the Control Logic Application Tests above. Ten status lines return to the GSTM receive fifo. Only the first two of these are used, the others are reserved. These status bits are not accessed by the test program, but their history may be dumped from the fifo in the event of a problem. The command sequence timing is also shown. Each command encompasses 7 base clock cycles. For a command to be locked, command line 12 must cycle during the 132 ns the command is active, as shown in the diagram. The current default configuration of the VRB is such that there are thirty two 2K buffers. The command sequencer is programmed such that there is a read to and a scan of each of these buffers, in the ratio of 2 reads per scan, as follows: Read to buffer 0, Read to buffer 1, Scan of buffer 0, Read to buffer 2, Read to buffer 3, Scan of buffer 1, (Recall that a read command takes data from the VRB input fifo and puts it into the designated buffer and a scan takes data from the buffer and moves it to the VRB output fifo.) The ratio of reads to scans can be set through a DEFINE parameter. This ratio, and the number of buffers, should eventually be set interactively by the user. Commands are stacked in the fifo such that all 32 buffers are scanned before the sequence has to restart. Each command sequence has an EOF associated with it and is padded to compensate for hardware delays.

The data that is sent by the GSTM is configurable and can be any of the standard patterns (WW, WZ, 0F and A5). One set of data is loaded into the second output fifo of the GSTM and it is continually recycled. Since a single GSTM is used, the program flow is such that the transmit fifos (designated the command fifo and the data fifo for this test) are alternately turned on and off depending on whether an SRC command or data is to be sent, as follows: turn off data fifo, turn on command fifo, send commands, if commands includes a SCAN, turn off command fifo, turn on data fifo, send data, call error checking function, turn off data fifo, turn on command fifo, if command sequencer is at the end, restart from the beginning, ... repeat.

The error checking function reads out the data from the VRB output fifo via VME. Each event readout consists of 10 eight bit “pipes” of data. With respect to the VRB, these 10 pipes of data are packed into four 20 bit G-Link channels as follows:

Pipe #�Pipe Bits�G-Link Channel�G-Link Bits��0�8�0�0-7��1�8�0�8-15��8�Low 4�0�16-19��2�8�1�0-7��3�8�1�8-15��8�High 4�1�16-19��4�8�2�0-7��5�8�2�8-15��9�Low 4�2�16-19��6�8�3�0-7��7�8�3�8-15��9�High 4�3�16-19��

The first word in the event is the total number of subsequent words in the event. The next five words are the number of words in each pipe, packed such that the number of words in pipe 0 is the low order 16 bits of the first word, the number of words in pipe 1 is the high order 16 bits of the first word, etc. The sum of the number of words in each pipe as reported in these five words is checked for consistency against the total number of words reported in the first header word. The 10 pipes worth of data are then checked against the data sent by the GSTM. The number of data pipes used in the VRB can be turned on and off individually by the user, and if turned on, internal VRB emulation mode or external data mode can be selected. Only data from the external data mode (i.e. from the GSTM) are checked. The total number of words checked and the error count are kept and reported via an updating display and, if so selected, error statistics are written to a data file.

� EMBED Designer.Drawing.6 ���

Figure � SEQ Figure * ARABIC �2� Block Diagram of the VRB - GSTM Subsystem Test Setup

FIB Subsystem Test

Hardware requirement for FIB subsystem testing:

For a full subsystem test, the FIB, FIB Fanout module and the Data Emulation Module (DEM) will be required in addition to two GSTM modules, one outfitted with a G-Link transmitter daughter card and acting as an SRC emulator for the FIB and the other outfitted with a G-Link receiver daughter card and acting as a VRB emulator. Either an mvme16x running VxWorks or a Bit 3 Transition board will be installed in a VME crate in addition to these modules.

Operation of Software for FIB subsystem testing:

� REF _Ref393679043 * MERGEFORMAT �Figure 3� shows the hardware configuration for the FIB subsystem test. The GSTMs may or may not be in the same crate as the FIB/FIB Fanout. FIB commands consisting of NO-OPS and READOUT (see the list of FIB commands in Appendix x) are generated and loaded into the main GSTM fifo acting as the SRC command emulator for the FIB. Each command consists of 7 fifo words in G_Link format. G-Link format implies that bits 0 - 19 are data, bit 20 is an alternate data bit (not used in this case) bit 21 is the Data Available bit (DAV) and bit 22 is the Control Available bit (CAV). When commands are sent, DAV must be set to 0 (active low) since we are treating the commands as data and CAV must be set to 1 since we are not sending control signals. Note that if both DAV and CAV are low, the Finisar board that interfaces between the G-Link receiver and the FIB-Fanout (or any of the other boards that use the Finisar-G-Link combination) becomes very confused. The FIB system utilizes bit 19 as a synch bit, as described above in the FIB Fanout section. Every 7 word FIB command sequence must have this synch bit high during the first 2 words.

The test sequence proceeds as follows. The G-Links are initialized and the FIB Fanout module is put into RUN mode. The FIB command sequence is created, with the number of NO-OP commands determined by user input. This is to allow different data rates to be studied. The NO-OPS are packed at the beginning of the sequence, followed by the READOUT command, which is followed by 7 words of padding to flush the hardware pipe and make sure the full command reaches the FIB. The DEM data is also calculated, using user supplied input, and stored in a structure. The function then enters a loop, sending the command sequence to the FIB system, then reading out the VRB emulating GSTM and comparing the data against the expected DEM data. Header words are also checked. Error statistics are kept and reported in an updating display and, if selected, written to file.

FIB - VRB Integration System Test

Hardware requirement for FIB - VRB Integration system testing:

For a data path integration test, the FIB, FIB Fanout module, Data Emulation Module (DEM), VRB, and VRB Transition Module (VTM), will be required in addition to two GSTM modules, one outfitted with a G-Link transmitter daughter card and acting as an SRC emulator for the FIB and the other outfitted with an SRC emulation daughter card and acting as an SRC emulator for the VRB. Either an mvme16x running VxWorks or a Bit 3 Transition board will be installed in a VME crate in addition to these modules.

Operation of Software for FIB subsystem testing:

� REF _Ref393679181 * MERGEFORMAT �Figure 4� shows the hardware configuration for the FIB - VRB integration system test. The expected configuration is to have the FIB subsystem in one rack and the VRB system, along with the GSTMs in a second rack. The VRB rack will be controlled by a PC running the diagnostic software through a BIT3 interface. This PC will also

� EMBED Designer.Drawing.6 ���

Figure � SEQ Figure * ARABIC �3� Block Diagram of the GSTM-FIB Subsystem Test Setup

communicate with the FIB system for initialization through an mvme 16x. The GSTMs will be loaded with command sequences as in the VRB and FIB subsystem tests.

The test sequence proceeds as follows. The G-Links are initialized and the FIB Fanout module is put into RUN mode. The FIB command sequence is created, with the number of NO-OP commands determined by user input. This is to allow different data rates to be studied. The NO-OPS are packed at the beginning of the sequence, followed by the READOUT command, which is followed by 7 words of padding to flush the hardware pipe and make sure the full command reaches the FIB. The VRB command sequence is also created, with the read to scan ratio determined be user input. The DEM data is calculated, using user supplied input, and stored in its structure. The function then enters a loop, sending the command sequence to the VRB system, requesting that it read out a particular channel. It then sends a command sequence to the FIB requesting that it send data. If the pattern checking flag is set, the VRB is readout and the data is compared to that expected from the DEM. Header words are also checked. Error statistics are kept and reported in an updating display and, if selected, written to file.

� EMBED Designer.Drawing.6 ���

Figure � SEQ Figure * ARABIC �4� Block Diagram of the GSTM-FIB-VRB Data Path Integration Test

GSTM - (Designer: Mingshen Gao) The GSTM is a multipurpose test module consisting of a mother board and daughter cards that can be tailored to emulate various hardware modules. Software will have to be written to operate the GSTM in each of its emulation modes. In addition, software to test the GSTM and the individual daughter cards will have to be written.
	Software will reside at two levels, a back-end (Unix or PC) level and a front-end or VxWorks level. At the VxWorks level will be utility level routines that will access the various registers of the GSTM module. These registers are comprised of the:

Test Register (Read only)
Control Register (Write/Read)
Mode Register and (Write/Read)
Status Register.(Read only)

In addition to these registers, there are 4 (write only) transmission fifos (T11, T12, T21, T22) and 4 (read only) input fifos (R11, R12, R21, R22). Reads and/or writes to all of these registers and fifos are necessary. The GSTM transmit fifos utilize the stop bit, (bit 26) which must be set 2 words prior to the actual end of a data stream or set of instructions. If a stop bit is not set, and the "end of data" flag generated by the fifo is used to stop transmission, then two extra words are transmitted. These two extra words are identical to the last word in the transmit fifo.

The implications for the software include: 1) the stop bit (bit 26) must be OR'd with the 3rd to last word of any set of instructions or test data pattern that is downloaded into the main transmit fifo, 2) the minimum number of words that can be transmitted are 3 (the first word containing the stop bit followed by two "trailers"), 3) since single stepping through a set of instructions is desired, a special set of code that expands an instruction or test data pattern set (1 word -> 3 words) will be required to acquire, expand, set stop bits every third word, and load the expanded pattern. (i.e. a pattern such as

0xfffab
0xfffed
0x40fffcf

expands to

0xfffab
0xfffab
0x40fffab
0xfffed
0xfffed
0x40fffed
0xfffcf
0xfffcf
0x40fffcf

for single stepping.

The Altera programmable logic devices can also be loaded through vme and software to accomplish this function will have to be written. Additional board level tests of this module will be accomplished using the Loop-Back Daughter Card that is being designed by Jim Franzen (see below).

Sequencer Encoding

The GSTM, FIB and SRC all have sequencers that will have to be programmed. A text based format pattern file that can be used by both the GSTM and FIB has been agreed upon. It is yet to be determined whether this format can also be used by the SRC. The overall plan calls for generation of a timing sequence program through a text editor or waveform generating package, translation of this program into the pattern file and then loading of the pattern file into the appropriate fifo’s or memory. The advantage to agreeing on a standard pattern file at this time is that it will allow users to use the most convenient tools to generate sequence files at this time, but allow them to switch to a different method at a later time. A flow chart for generating sequence files showing various schemes is shown in figure 1. For a system that is still in a state of flux with respect to timing sequences, such as the FIB, K. Woodbury will develop a translation program to produce a pattern file from the output of the commercial graphical waveform generating package Waveformer. The sequence generating package SONIC, originally developed for the Fastbus modules, will be modified to program the GSTM and FIB. A more bare-bones package may also be developed in collaboration with M. Gao. The output of each of these packages will be an ascii hex pattern file, the first line of which will be reserved for a comment. The following lines will consist of 36 hex values, the first 4 (16 bits) will be reserved for address or sequence count, with the remaining 32 (128 bits) being the instruction. The address and instruction values are separated by a colon and the end of line is designated by a carriage return and line feed. Space characters are ignored to allow separation of instructions between multiple sequencers on a board (e.g. the GSTM). This format is summarized below, along with examples for GSTM and FIB sequencers. The pattern file can be directly edited for minor modifications. There are plans to write hex-to-binary and binary-to-hex converters to allow easy manipulation of individual bits in the sequence files.

Pattern file format:

ASCII file
First line is a comment line,
followed by ASCII strings as specified below:

XXXX:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX<CR<LF
2) 3) 				 4)

16 bit Hex number
Colon separator
128 bit Hex number
End of line characters (order does not matter)
Note: space characters are ignored.

Comment lines will begin with a semicolon (;).

Examples:

Example 1 - no Space <32 characters

; addr : data
XXXX:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX<CR<LF

Example 2 - GSTM format (preliminary)

; cnt : fifo1 fifo2 fifo3 fifo4 fifo5 fifo6 spare
XXXX:XXXXXXXX XXXXXXXX XXX XXX XXX XXX XXXX<CR<LF

Example 3 - FIB Micro-seqencer memory format (preliminary)
; cnt : offset	 data
XXXX:XXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXX<CR<LF

Summary of pattern file and examples, courtesy of K. Woodbury.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �5� Pattern file generation flow chart for GSTM and FIB, courtesy of K. Woodbury.
Loop-Back Daughter Card - (Designer: Jim Franzen)

Configuration file daughter card designation: LOOPBACK

The loop-back daughter card will be used to test the GSTM module. Jim has written a test plan for using this card in his design report, A GSTM Loop-Back Daugher Card for GSTM Self Sesting, document number ESE-SVX-960422. This plan is reproduced and expanded upon here.

The following diagnostic descriptions often refer to GSTM Motherboard logic that will be tested. For reference, have a copy of the GSTM Motherboard Specification document number ESE-SVX-960126 on hand. References made here to GSTM hardware can be seen in the GSTM Motherboard Specification, Figure 2: “Functional Blocks for the GSTM Motherboard”.

A test program will be needed which generally adheres to the content and sequence detailed here. The GSTM Test Register will be used in a non-standard way to monitor the various control signals being tested, as shown below.

Issue a /Master-Reset and check for an ID value of 0x01 in both T-Port and R-Port fields of the GSTM Test Register. This test verifies the receipt of /Master-Reset at each port. The GSTM Test Register should show the following patterns after this operation.

GSTM Test Register (read only) at Base Address + 0x00, GSTM Loop-Back across T1 and R1 ports�����BIT�MEANING�EXAMPLE�NOTES��26-31�T1-Port Daughter Card ID�0x01�Loop-Back Card gives ID number after /Master-Reset��20-25�R1-Port Daughter Card ID�0x01�Loop-Back Card gives ID number after /Master-Reset��14-9�T2-Port Daughter Card ID�…�undefined (no card/unknown daughter card attached)��8-13�R2-Port Daughter Card ID�…�undefined (no card/unknown daughter card attached)��0-7�fixed to be 0x05�0x05�always 0x05��
Test that all six ID bits of both ports are functional. Generate a global GSTM CR-Cbit0 signal after putting bit-toggle test patterns in the T-FIFO. The low-order six bits of T-FIFO data should appear on the ID bits of the Test Register as shown below. A multiplexer failure might indicate a problem with the CR-Cbit0 signal at the erring port connector.

GSTM Test Register (read only) at Base Address + 0x00, GSTM Loop-Back across T1 and R1 ports�����Global CR-Cbit0 asserted, last T-FIFO data strobed by SYS-CLK was 0x0000001A �����BIT�MEANING�EXAMPLE�NOTES��26-31�T1-Port Daughter Card ID�0x1A�Loop-Back Card returns last clocked T-FIFO data��20-25�R1-Port Daughter Card ID�0x1A�Loop-Back Card returns last clocked T-FIFO data��14-9�T2-Port Daughter Card ID�…�undefined (no card/unknown daughter card attached)��8-13�R2-Port Daughter Card ID�…�undefined (no card/unknown daughter card attached)��0-7�fixed to be 0x05�0x05�always 0x05��

Test the functionality of the P-Control bits, the /CR-Control bits and the MR-Mode bits for both ports under test. Generate a global GSTM CR-Cbit1 signal and the ID bits will be multiplexed in such a way as to monitor the status of the bits. Test software must command the GSTM to generate these signals. The P-Control (P-Cntrl) bits will be defined as bits 11-13 in the GSTM control register, as shown in the Control Register bit assignment table, which is a modified version of Table 5 in the GSTM design document. The modification is shown in bold type. The T-Port bits reflect control register settings, while the R-Port bits are inverted. The ID bits in the Test Register are used to verify the operability of the P-Cntrl bits at each port connector. The control bits monitored through any given port ID bit field are the control bits for that port. A multiplexer failure might indicate a problem with the CR-Cbit1 signal at the erring port connector.

GSTM Test Register (read only) at Base Address + 0x00, GSTM Loop-Back across T1 and R1 ports�����Global CR-Cbit1 asserted. �����BIT�MEANING�EXAMPLE�NOTES��26-31�T1-Port Daughter Card ID�0x17�T-PORT P-Cntrl<2:0 =5, /CR-Cntrl = 1, MR-Mode = 1��20-25�R1-Port Daughter Card ID�0x17�R-PORT P-Cntrl<2:0 =5, /CR-Cntrl = 1, MR-Mode = 1��14-9�T2-Port Daughter Card ID�…�undefined (no card/unknown daughter card attached)��8-13�R2-Port Daughter Card ID�…�undefined (no card/unknown daughter card attached)��0-7�fixed to be 0x05�0x05�always 0x05��

BIT�MEANING�EXAMPLE/NOTES��31�/CR-Cntrl for T1-Port�Reset the TAXI��30�/CR-Cntrl for R1-Port���29�/CR-Cntrl for T2-Port�Resynch the G-Link��28�/CR-Cntrl for R2-Port���27�User-Defined Cbits, Not Used�Passed to Lctl��14-26�Not Valid���13�<P2 Cntrl Bit�Passed to Port-Controllers��12�<P1 Cntrl Bit�Passed to Port-Controllers��11�<P0 Cntrl Bit�Passed to Port-Controllers��10�Start-Receiving���9�Stop-Receiving���8�Reset/Clear Selected FIFOs���7�LoopOver-Transmitting���6�Restart-Transmitting���5�Start-Transmitting���4�Stop-Transmitting���3�Clear Error Status Bits���1-2�Global CR-Cbits�Cntrl-Signals to all Ports��0�Master-Reset���Loop-back daughter card Control Register bit assignments

Test the functionality of daughter card status return bits P-Status<2:0 and SR-Status<1:0 for both ports under test. Generate both the global GSTM CR-Cbit0 and CR-Cbit1 signals after loading test pattern data in the T-FIFO. The low-order five T-FIFO bits will be echoed across the port-specific status return bits. For the loop-back daughter card, depending on whether bit 27 of the Mode Register is set (see Mode Register Table), either the R-PORT or T-PORT bits will be sent to the user defined status bits 27-31 in the GSTM status register as shown in the Loop-back daughter card Status Register bit assignment table, derived from Table 7 in the GSTM design document. Modifications are shown in bold.

Write test pattern data into the T-Port FIFOs until full. Test that the Fifo Full flag has been set. Control the T-Port’s and R-Port’s bi-directional data using the P-Cntrl<2 bit in the Control register. We will assume for now that P-Cntrl<2 = 0 will imply that T12 (or T22) Fifo 1 is transmitting and R12 (or R22) Fifo 2 is receiving. Then P-Cntrl<2 = 1 will imply that T12 (or T22) Fifo 2 is transmitting and R12 (or R22) Fifo 1 is receiving. Clock the T-Port T11 (or T21) FIFO data into the R-Port R11 (or R21) FIFO. Read the R-Port FIFO and compare for errors. Both transmit/receive paths should be tested. Note that for the Loop-back daughter card tests, the upper four bits of the GSTM mode register, which usually control which of the bi-

BIT�MEANING�EXAMPLE/NOTES��31�General(user-defined)Status bit 15�T/R Port SR-Status 1��30�General(user-defined)Status bit 14�T/R Port SR-Status 0��29�General(user-defined)Status bit 13�T/R Port P-Status 2��28�General(user-defined)Status bit 12�T/R Port P-Status 1��27�General(user-defined)Status bit 11�T/R Port P-Status 0��26�General(user-defined)Status bit 10�Reflects Mode bit 27��25�General(user-defined)Status bit 9�Reflects Mode bit 27��24�General(user-defined)Status bit 8�Reflects Mode bit 27��23�General(user-defined)Status bit 7���22�General(user-defined)Status bit 6���21�General(user-defined)Status bit 5���20�General(user-defined)Status bit 4���19�General(user-defined)Status bit 3���18�General(user-defined)Status bit 2���17�General(user-defined)Status bit 1���16�General(user-defined)Status bit 0���15�R12-FIFO-1 full (full=0)���14�R12-FIFO-1 empty (empty=0)���13�R22-FIFO-1 full (full=0)���12�R22-FIFO-1 empty (empty=0)���11�T1-Port in transmitting (=0)���10�T11-FIFO full (full=0)�also for T12-FIFO-1,2��9�T11-FIFO empty (empty=0)�also for T12-FIFO-1,2��8�R1-Port in receiving (=0)���7�R11-FIFO full (full=0)�also for R12-FIFO-2��6�R11-FIFO empty (empty=0)�also for R12-FIFO-2��5�T2-Port in transmitting (=0)���4�T21-FIFO full (full=0)�also for T22-FIFO-1,2��3�T21-FIFO empty (empty=0)�also for T22-FIFO-1,2��2�R2-Port in receiving (=0)���1�R21-FIFO full (full=0)�also for R22-FIFO-2��0�R21-FIFO empty (empty=0)�also for R22-FIFO-2��
Loop-back Daughter Card Status Register bit assignments

directional ports are receiving and which are transmitting, have no effect, as indicated in the Loop-back Daughter Card Mode Register bit assignment table. All directional control is accomplished through the P-Cntrl<2 bit. For the loop-back tests, a maximum of 35 bits of data can be transmitted through the daughter card, since one of the bi-directional ports must be configured to send and one to receive. With other daughter cards, both bi-directional ports may be configured to transmit or receive, resulting in a maximum of 44 bits of data being sent or received.

BIT�MEANING�EXAMPLE/NOTES��31�Not used���30�Not used���29�Not used���28�Not used���27�Select R-Port or T-Port Status out to Status Register�1=R-Port, 0=T-Port
Also turns on F.P. LED��14-26�Not-Valid���10-13�User-Defined Mbits, Not-Used�Passed to all Port-Controllers��9�User-Defined Mbit, for G-Link�G-Link flag select��8�Stop-on-Error���7�T1-Mode�TAXI 8/9 transfer mode��6�R1-Mode�TAXI 8/9 transfer mode��5�T2-Mode�G-Link 16/20 transfer mode��4�R2-Mode�G-Link 16/20 transfer mode��3�Select/Enable T1-Port�Also the fifos in the block��2�Select/Enable R1-Port���1�Select/Enable T2-Port�Also the fifos in the block��0�Select/Enable R2-Port�������
Loop-back Daughter Card Mode Register bit assignments.

Master Clock/TSI-TAXI Transmitter Daughter Card - (Designer: Vince Pavlicek)

Configuration file daughter card designation: MCTSI

The Master Clock/TSI-TAXi Tx daughter card will be used to simulate the transmission of data over an optical link between the TSI and the SRC. It will cover both the transmit and receive connectors of a port, but will only be connected to the transmission connector. There are three features of this card that require testing. The first is the master clock signals that are comprised of the BZ, BX and Abort Gap signals along with the clock and synch signals. The patterns that drive BZ, BX and the Abort Gap should be loaded into bits 16-18 of the GSTM T-fifo. The clock and synch are generated automatically. All five of these signals are looped back to bits 4-8 of the Data-I/O fifo (Rx2-fifo1), where they can be compared to the input signals. A simple looping test with user specification of standard patterns (walking ones, walking zeros, etc.) should be adequate for this test. A continuous cycle test will also be developed to allow these signals to be investigated with an oscilloscope or logic analyzer.

The second feature to be tested utilizes these same signals and a special cable to connect the Master Clock #2 output connector to the TSI status input connector to study the TSI status section of the board. In this configuration, the clock signals (synch, BZ, BX and Abort) will appear on bits 0 - 3 of the Data-I/O fifo in addition to bits 5 - 8. Again, a simple looping routine with a comparison of input versus output should be adequate for this test.

The third feature to be tested is the TSI Taxi section. Two tests are required, one that will allow a test pattern to be observed with a logic analyzer and one which will utilize a Taxi Receiver daughter card. Both tests will require data patterns to be loaded into bits 0-11 of the GSTM transmission fifo. The user can select the mode in which to run: either 3 control bits and 9 data bits or 4 control bits and 8 data bits (see Mode register table). The test utilizing the analyzer requires that the user be able to specify a specific bit pattern that is loaded into the fifo and continuously looped over. Depending on the control mode selection, a dialog box will appear that allows the user to select the control and data patterns to send. This data pattern will be continuously transmitted until the user requests a stop. The second test, utilizing the Taxi receiver card, will require the user to select one of the standard test patterns to load. A looping routine will be executed, with the input received by the receiver card compared to the original data pattern. An updating display will be used to log errors. The user will also have the usual options to stop on an error or to log errors to a data file.

Specific board level tests have not been designed, however there may need to be checks of the status bits (there may be a jumper selectable diagnostic mode that puts the status bits into a readable memory - normally the status bits are simply passed through the card), the clocks and the data bits. The data bits may require a pattern generation and comparison routine, with the data being transmitted to a TAXI Rx Daughter card, to test the bit error rate. (Since receiver cards may not be available until some time after the building of the transmitter card, a kluge receiver card may be necessary.) The pattern would be generated and loaded into the command fifos of the GSTM, and the GSTM would be put into loop mode.

G-Link Transmitter and Receiver Cards - (Designers: Don Husby and Stefano Rapisarda)

Configuration file daughter card designations: GLNKT and GLNKR for the transmitter and receiver respectively.

The G-Link transmitter and receiver cards will be used to simulate G-Link transmissions between modules such as the VRB and FIB. The cards are tested by setting up a data loop, checking the data received against the initial data patterns transmitted. The test is designed assuming that the transmitter daughter card is on the upper GSTM port and the receiver is on the lower port. The initialization procedure for this test is as follows:

Set the transmitter and receiver to 20 bit mode (rec = mode bit 4, trans = mode bit 7)
Set the transmitter flag select to 0 (note that this is opposite of what is done when establishing lock between the GSTM G-Link daughter cards)
Set Fill Frame to 0 (This is mode bit 10 on the GSTM)
Set the CAV and DAV bits high on the data bus (Put three words, with bits 21 and 22 set, into the GSTM transmit fifo and transmit)
Reset the receiver (Control bit 28 set to 1)
Reset the transmitter (Control bit 31 set to 1)
Wait 1ms
Start the transmitter (Control bit 31 set to 0)
Wait for Locked = 1 (Status bit 18)
Start the receiver (Control bit 28 set to 0)
Wait for Link Ready = 0(Status bit 21)
Set Fill Frame to 1
Wait for phase lock = 1 (Status bit 20)
Reset the GSTM transmit fifo
Reset the transmit fifo

This completes the initialization procedure for the G-Link daughter cards, and puts them into a locked state. At this point data can be loaded into the GSTM transmit fifo and transmitted across the G-Link connection. For the loop test, this data is a user determined pattern. A sequence of instructions may also be loaded into the, by replacing the pattern designation in the configuration file line for the transmitter with a file path. The file is loaded, transmitted and read using the Load Fifo, Cycle Fifo and Dump Fifo commands under the GSTM tests menu.

SRC Emulator Card - (Designer: Mingshen Gao)

Configuration file daughter card designation: SRCEM

The SRC Emulator card translates GSTM sequencer output into LVDS signals, emulating the SRC for use with boards such as the VRB. Due to its simplicity, there were no tests designed for this board, although a loop test with the VRB Emulator Card could be done if requested. This card has been used successfully to send commands to the VRB module. It requires no initialization.

Software development

Software development will proceed in stages. The requirements include utilizing the PC as the primary user hardware platform and developing user friendly GUIs for control and analysis functions.

The first stage of development will include functions to read and write to operator defined memory locations, memory dumps, and read and write memory loops. The preferred platform will be the PC. The PC to vme interface will be through vmeAccess. The initial interface will be command line and/or tcl/Tk.

In parallel to this effort, the SONIC program will be modified to generate the agreed upon pattern file, and an appropriate macro library of GSTM commands will be built, initially for use in testing the GSTM itself.

The second stage of development will include developing the required macro library of commands necessary to test the SRC, along with development of a user friendly GUI interface.

Appendix 1 - SVX3 Test System Configuration File

The environmental parameters for GSTM test systems will be maintained in configuration files. The configuration files will be read and parameters written into appropriate configuration structures (e.g. GSTMCONFIGSTRUCT, see Appendix 2). Comment lines are prefaced by #. Lines beginning with SVX*** (e.g. SVXGSTMS) indicate that the lines that follow pertain to the *** module. All lines that follow an SVXMASTER header, up to any succeeding SVXMASTER header, pertain to that master. Parameters may be separated by spaces or tabs. SVXANAL relates to configuration parameters used in analysis of test data. It should come at the end of the configuration file. A prototype configuration file is shown below, with lines for GSTM (including daughter cards) and memory modules. Example lines for additional configurations for modules will be added as they are defined.
�
Prototype Configuration File

SVX SYSTEM
#ID Node Name
 1 fndawy
#
SVX GSTMS
#ID base ports usd
 1 0x10000000 L
#
SVX GSTM DAUGHTER
#Dghtr Card Port Pos pttrn length usrPat config
 LOOPBACK U WW 3000 0x00000000 NONE
 MCTSI L WW 42 0x00000fff NONE
#
SVX GSTMS
#ID base ports usd
 2 0x70000000 L
#
SVX GSTM DAUGHTER
#Dghtr Card Port Pos pttrn length usrPat config
 LOOPBACK U WW 3000 0x00000000 NONE
 MCTSI L WW 100 0x00000aaa NONE
#
SVX MEMORY
#ID Base StartAddr MaxAddr Aty Dty Xfr Pr lgth pt
 3 0x80000000 0x00000000 0x00000000 EXT 32 SINGLE 2000 WW
#
SVX VRBS
#ID Base StartAddr MaxAddr Aty Dty Xfr Pr lgth pt fam
 4 0x30000000 0x00000000 0x000003ff EXT 16 SINGLE 2000 WW B
#
SVX FFO
#ID base pttrn length
 15 0x78000000 C:\SVX3\temp\ffofakedata.txt 100
#
SVX FIBS
#ID base
 16 0xA0000000
SVX SYSTEM
#ID Node Name
 2 eseserver1
#
SVX GSTMS
#ID base ports usd
 1 0x20000000 L
#
SVX GSTM DAUGHTER
#Dghtr Card Port Pos pttrn length usrPat config
 LOOPBACK U WW 3000 0x00000000 NONE
 GLNKR L WW 100 0x00000fff NONE
#
SVX GSTMS
#ID base ports usd
 2 0x60000000 L
#
SVX GSTM DAUGHTER
#Dghtr Card Port Pos pttrn length usrPat config
 GLNKT U WW 3000 0x00000000 NONE
 MCTSI L WW 100 0x00000aaa NONE
#
�
SVX ANAL
#Err Check Stop on Err Log File Log File Name
 YES NO NO NONE	

Configuration file heading definitions:

SVX SYSTEM - All configuration file lines between SYSTEM lines pertain to a single system, where “system” is defined to be a crate controller and its slaves.

Id - the id number of the system. The first system should have an id of 1, and following systems should be assigned incrementing id values.

Node Name - the node name (e.g. FNDAWY or BIT3) of the VMEbus crate master or the PC-VMEbus interface card. Currently only BIT3 interface cards are supported by FISION.

SVX GSTMS - the lines following this header pertain to a GSTM and its daughter cards.

Id - the id number of the GSTM module. By convention this should be the slot number where the GSTM resides.

Base - the base address of the GSTM mother board.

Ports usd - the GSTM ports used. Can be U (upper port) L (lower port) or B (both ports).

SVX GSTM DAUGHTER - the lines following this header pertain to the daughter cards of a GSTM mother board. This header must always follow a SVX GSTMS header line. Up to 4 entries (for each of the 4 possible ports - upper and lower transmission and receiver).

Dghtr Card - the name of a daughter card:
	LOOPBACK	- the loopback test card
	MCTSI	- the master clock/TSI emulation card
	GLNKT	- the G-Link transmitter card
	GLNKR 	- the G-Link receiver card
	SRCEM	- the SRC emulator card for the VRB module.

Port Pos - the port position of the card: U (upper port) L (lower port)

Pttrn - the data pattern to use with respect to the card, if pertinent. Standard patterns are listed in � REF _Ref393769246 * MERGEFORMAT �Table 7� at the end of this section. The name of a pattern file may also be entered here (e.g. c:\svx3\temp\testfile.txt).

Length - the default number of data words to load into the mother board output fifo or to expect in the input fifo.

UsrPat - if a user defined pattern is specified under the pttrn heading, the pattern is specified under this heading, in hex notation.

Config -

SVX MEMORY - the lines following this header pertain to a VMEbus memory card. This header can also be used with respect to any VMEbus card that contains memory.

Id - the id number of the memory module. By convention this should be the slot number where the module resides.

Base - the base address of the module.

StartAddr - the starting address of the accessible memory, relative to the base address.

MaxAddr - the maximum address of the accessible memory, relative to the base address.

Aty - the address type of the card:
	SHORT	- 16 bit address
	STD		- 24 bit address
	EXT		- 32 bit address
	LONG		- 64 bit address

Dty - the data type used by the card:
	16 bit
	32 bit
	64 bit

Xfr Pr - the transfer protocol of the card:
	SINGLE
	BLOCK

lgth - the number of words to load into the memory, if pertinent.

Pt - the data pattern (see data pattern types in � REF _Ref393769246 * MERGEFORMAT �Table 7�) to load into memory, if pertinent.

SVX VRBS - the lines following this header pertain to the VRB module. The VRB module is basically a memory module, so the configuration line is the same as that for a memory module (see entries under SVX MEMORY above) with a single addition:

fam - fifo address modifier: the address modifier (vmeBus am code) to be used when reading out the VRB output fifo.

SVX FFO - the lines following this header pertain to the FIB Fanout module.

Id - the id number of the module. By convention this is the FIB Fanout slot number, which is always 15.

Base - the base address of the FIB Fanout. The base address associated with slot 15 is always 0x78000000 under the geographical addressing scheme used by the SVX project.

Pttrn - the data pattern to use with respect to the card, if pertinent. Standard patterns are listed in � REF _Ref393769246 * MERGEFORMAT �Table 7� at the end of this section. The name of a pattern file may also be entered here (e.g. c:\svx3\temp\testfile.txt).

Length - the default number of data words to load into the FIB Fanout error fifo if pertinent to the test being run.

SVX FIBS - the lines following this header pertain to the FIB module.

Id - the id number of the module. By convention this is the module slot number. In a standard system, acceptable slot numbers are 9 - 14 and 16 - 21.

Base - the base address of the module.

Pattern Abbreviation�Pattern Type��WW�Walking Ones��WZ�Walking Zeros��A5�Alternating 0xa...a and 0x5...5��0F�Alternating 0 and 0xf...f��IN�Incrementing (1,2,...��US�User defined pattern��
Table � SEQ Table * ARABIC �7� Standard Data Pattern Definitions

Appendix 2 - Software for the GSTM

It has been agreed to prefix function names with the name of the module they apply to when this makes sense (e.g. commonly used utility functions such as "masterReset" will become "gstm_masterReset" or "src_masterReset", etc. A similar strategy will apply to structures. I have gone through and modified my code to meet this criteria. Below is the new list of function names, structure names and related globals. We expect, for example, that there will eventually be a VRBCONFIGSTRUCT, SRCCONFIGSTRUCT, etc.

Table 1) Include files.
File Name�Description��SVX.h�This file contains globally useful things for the svx code��SVX_Param.h�General constants used in SVX3 electronic module testing.��SVX_Error.h�Error codes used in SVX3 diagnostic code��SHMEM.h�Shared memory function prototypes��SVX_GenStrct.h�Contains generic structures used in the SVX3 diagnostic code��SVX_GstmStrct.h�Contains structures pertinent to the GSTM functions��SVX_MemStrct.h�Contains structures pertinent to Memory module test functions.��SVX_FibStrct.h�Contains structures pertinent to the FIB functions��SVX_FibfoStrct.h�Contains structures pertinent to the FIB Fanout functions��SVX_SrcStrct.h�Contains structures pertinent to the SRC functions��SVX_VrbStrct.h�Contains structures pertinent to the VRB functions��GSTM_RegDef.h�Contains definitions and structures pertinent to the GSTM registers��FIB_RegDef.h�Contains definitions and structures pertinent to the FIB registers��FIBFO_RegDef.h�Contains definitions and structures pertinent to the FIB Fanout registers��VRB_RegDef.h�Contains definitions and structures pertinent to the VRB registers��SVX_UtilityApi.h�Contains function prototypes for utility routines��SVX_MemApi.h�Contains prototypes for functions pertinent to memory modules��SVX_FibApi.h�Contains prototypes for functions pertinent to FIB modules��SVX_FibfoApi.h�Contains prototypes for functions pertinent to FIB Fanout modules��SVX_VrbApi.h�Contains prototypes for functions pertinent to VRB modules��SVX_GstmApi.h�Contains prototypes for functions pertinent to GSTM modules��GSTM.h�Contains include files required for files used in testing GSTM daughter cards��TCL_SvxCmds.h�Contains all the TCL prototypes for the TCL to C interface��
�
Table 2) Source Files
File name �Contents��SHMEM.c�Functions required for utilization of shared memory��SVX_Utility.c�SVX3 diagnostic utility routines��SVX_Config.c�SVX3 diagnostic configuration file manipulation functions��SVX_SpawnMain.c�Main routine called when spawning looped tests��GSTM_Fns.c�Functions pertinent to the use of the GSTM��GSTM_Tests.c�Functions pertinent to the testing of the GSTM daughter cards��MEMORY_Tests.c�Functions pertinent to the testing of Memory modules��FIB_Fns.c�Functions pertinent to the use of the FIB��FIB_Tests.c�Functions pertinent to the testing of the FIB module��FIBFO_Fns.c�Functions pertinent to the use of the FIB Fanout��FIBFO_Tests.c�Functions pertinent to the testing of the FIB Fanout module��FIBFO_Stests.c�Functions pertinent to the testing of the FIB Fanout module that are run as spawned processes. Usually loop tests.��VRB_Fns.c�Functions pertinent to the use of the VRB��VRB_Tests.c�Functions pertinent to the testing of the VRB module��INT_Tests.c�Functions pertinent to the testing of the integrated FIB-VRB data path ��TCL_Svx3.c�Main svx3 tcl routine��TCL_Config.c�tcl interface to the configuration routines��TCL_FibConfig.c�tcl interface to the configuration routines for the FIB��TCL_VmeCmds.c�tcl interface to the memory read/write routines��TCL_GstmRegisters.c�tcl interface to the GSTM register read/write routines��TCL_GstmLp.c�tcl interface to the GSTM Loopback daughter card test routines��TCL_GstmMctsi.c�tcl interface to the GSTM MC/TSI daughter card test routines��TCL_FibFanout.c�tcl interface to FIB Fanout general functions��TCL_FibfoTests.c�tcl interface to FIB Fanout tests��TCL_FibTests.c�tcl interface to FIB tests��TCL_VrbTest.c�tcl interface to VRB tests��TCL_IntTests.c�tcl interface to the integrated FIB-VRB test��

Structure name�Contained In�Related global record�� Configurations��SYSTCONFIGSTRUCT��systCR��GSTMCONFIGSTRUCT �SYSTCONFIGSTRUCT�gstmCR��PORTSTRUCT�GSTMCONFIGSTRUCT�portCR��MEMCONFIGSTRUCT�SYSTCONFIGSTRUCT�memCR��FIBCONFIGSTRUCT�SYSTCONFIGSTRUCT�fibCR��FIBFOCONFIGSTRUCT�SYSTCONFIGSTRUCT�fibfoCR��SRCCONFIGSTRUCT�SYSTCONFIGSTRUCT�srcCR��VRBCONFIGSTRUCT�SYSTCONFIGSTRUCT�vrbCR��V_STRUCT�SYSTCONFIGSTRUCT�vCR��ANALCONFIGSTRUCT ��analRec��Statistics and Error Checking��GSTMSTATSSTRUCT ��gstmStatsRec��FIBSTATSSTRUCT��fibStatsRec��MEMSTATSSTRUCT��memStatsRec��VRBSTATSSTRUCT��vrbStatsRec��FIBFOSTATSSTRUCT��ffoStatsRec��GENERRORCHCK��genErrorChck_R��Fifos ��GSTMFIFOSTRUCT��gstmFifoRec��FIBFIFOSTRUCT��fibUD��Miscellaneous��Structure name�Description�Related global record��MODSPAWNSTRUCT�Holds data required by spawned processes. Is used to create shared memory.
Contained in SPAWNSTRUCT�MemSpawnR
gstmSpawnR
vrbSpawnR
fibSpawnR
ffoSpawnR
srcSpawnR��SPAWNSTRUCT�Holds MODSPAWNSTRUCT records���DETEMUSTRUCT�Data for Detector Emulator Module configuration�detEmuRec��FIBLOOPTESTSTRUCT�Data for FIB integration test�fibLoopTestRec��

Module specific function protocols:

Prototype descriptions- (not yet complete)

SVX_UtilityAPI.h

/*
	This include file contains all the prototypes for SVX electronics
	modules diagnostic utility routines.

	Wayne Koska
	1-6-97
*/

int strUpper(char charBuff[]);
Arg 1: character string
Function: Sets all characters in the string to upper case.

int nodeIdfnc(char nodeName[]);
Arg 1: IP node-name of a vme bus master.
Function: Returns a node ID number that has been associated with an IP node name. If a number has not been associated, it creates the association.

int nodeCnt(void);
Function: Returns the number of active nodes used in the test system.

int readFile(FILE *g_rfp, char *filename, char charBuff[], int charBuffsize);
Arg1: file descriptor
Arg2: file name (Not Used)
Arg3: character string
Arg4: size of character string in bytes
Function: Reads a line from stream designated by Arg1 and returns it in character string designated in Arg3. Ignores lines that begin with a # or ;.

int openSlave(VISION_SLAVE *mySlave, unsigned long int base);
Arg1: pointer to VISION_SLAVE structure previously declared.
Arg2: base address of slave module
Function: Wrapper around Fision call to open a slave module.

int openFifoSlave(VISION_SLAVE *mySlave, unsigned long baseAdd);
Arg1: pointer to VISION_SLAVE structure previously declared.
Arg2: base address of slave module
Function: Wrapper around Fision call to open a slave module in fifo mode.

int loadRegister(VISION_SLAVE mySlave, unsigned long offsetAdd, unsigned int *registerData);
Arg1: pointer to VISION_SLAVE structure previously declared and used in a Vision open call.
Arg2: offset of register relative to base address of module.
Arg3: data to be loaded into the register.
Function: To load data into a register.

int loadFifo(VISION_SLAVE mySlave, unsigned long offsetAdd, int *fifoData, unsigned int dataCnt);
Arg1: pointer to VISION_SLAVE structure previously declared and used in a Vision open (fifo) call.
Arg2: offset of fifo relative to base address of module.
Arg3: pointer to starting location of data.
Arg4: number of data words to load.
Function: To load data into a fifo.

int loadMemory(VISION_SLAVE mySlave, unsigned long offsetAdd, int *memData, int dataCnt);
Arg1: pointer to VISION_SLAVE structure previously declared and used in a Vision open call.
Arg2: offset of external memory location relative to base address of module.
Arg3: pointer to starting location of data in local memory.
Arg4: number of data words to load.
Function: To load data from local memory into an external memory.

int readRegister(VISION_SLAVE mySlave, unsigned long offsetAdd, unsigned int *registerData);
Arg1: pointer to VISION_SLAVE structure previously declared and used in a Vision open call.
Arg2: offset of register relative to base address of module.
Arg3: pointer to memory location into which register data is to be put.
Function: To read data from a register.

int readFifo(VISION_SLAVE mySlave, unsigned long offsetAdd, int *fifoData, int dataCnt);
Arg1: pointer to VISION_SLAVE structure previously declared and used in a Vision open (fifo) call.
Arg2: offset of fifo relative to base address of module.
Arg3: pointer to starting location in memory where data is to be put
Arg4: number of data words to read from fifo.
Function: To read data from a fifo.

int readMemory(VISION_SLAVE mySlave, unsigned long offsetAdd, int *memData, int dataCnt);
Arg1: pointer to VISION_SLAVE structure previously declared and used in a Vision open call.
Arg2: offset of starting address of external memory relative to base address of module.
Arg3: pointer to starting location of local memory where data is to be put.
Arg4: number of data words to read.
Function: To read data from an external memory into a local memory.

SVX_ConfigApi.h

/*
	This include file contains all the prototypes for functions pertinent to manipulating
	SVX configuration files. Configuration files contain environmental parameters relevant
	to the system or individual modules, such as base address of a module, or data type to load
	for a given test.

	Wayne Koska
	1-6-97
*/

int readConfig(char *filename);
Arg1: Name of the configuration file.
Function: Reads the system configuration file designated by Arg1.

int writeConfig(char *filename);
Arg1: Name of the configuration file.
Function: Writes a system configuration file with the name designated by Arg1.

int printConfig(FILE *c_wfp);
Arg1: file descriptor
Function: Prints the configuration file to the stream designated by Arg1.

int decodeSYST(char charBuff[]);
Arg1: Character string containing a line from the configuration file pertinent to the system.
Function: To decode the character string and load the arguments into the relevant configuration structure.

int decodeGSTM(char charBuff[]);
Arg1: Character string containing a line from the configuration file pertinent to a GSTM.
Function: To decode the character string and load the arguments into the relevant configuration structure.

int decodeGSTM_DC(char charBuff[]);
Arg1: Character string containing a line from the configuration file pertinent to a GSTM daughter card.
Function: To decode the character string and load the arguments into the relevant configuration structure.

int decodeMemory(char charBuff[]);
Arg1: Character string containing a line from the configuration file pertinent to a memory module.
Function: To decode the character string and load the arguments into the relevant configuration structure.
int decodeAnal(char charBuff[]);
Arg1: Character string containing a line from the configuration file pertinent to the test analysis.
Function: To decode the character string and load the arguments into the relevant configuration structure.

int decodeCheck(int statVal, char *filename);
Arg1: Status value returned by decodeXXX function.
Arg2: Name of configuration file being parsed.
Function: Reads status code returned by one of the decodeXXX functions and prints out an error message.

int headCheck(char charBuff[]);
Arg1: Character string containing a line from the configuration file.
Function: To check whether the character string contains a configuration file header line.

SVX_GstmApi.h

/*
	This include file contains all the prototypes for SVX electronics
	modules diagnostic GSTM routines.

	Wayne Koska
	1-6-97
*/

int glp_cycleFifo(char nodeName[], int gstmId, int TR_direction);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to test.
Arg3: Direction of data transfer for selectable data transfer.
Function: Transmits data out of transmit fifos into receive fifos through loop back daughter card.

int gstmDumpFifo(char nodeName[], unsigned int gstmId, unsigned int port, unsigned int fifoNo,
			 unsigned int wordCnt, char *fileName);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to test.
Arg3: Port of fifo to dump (Upper or Lower).
Arg4: not used
Arg5: Number of words to dump.
Arg6: Name of file to write data into.
Function: Reads data from receive fifos of designated gstm port and writes it to designated file.

int removeSpace(GSTMFIFOSTRUCT gstmFifoRec[], CNTRSTRUCT *pcntrRec);

int makePattern(char patternType[], long int patternArray[]);
Exist???

int initPattern(unsigned int fifo_1_Array[], unsigned int fifo_2_Array[], char pattern[]);
Exist???

int createGSTMPattern(char patternType[], GSTMFIFOSTRUCT gstmfifoRec[], int maxIters, int *reset_seed);
Arg1: Pattern type parameter (e.g. WW, WZ, etc.).
Arg2: GSTM fifo structure record to store pattern data into.
Arg3: Number of words to store.
Arg4: Flag designating whether pattern should be reset.
Function: Stores a pattern for the GSTM fifos into the GSTMFIFOSTRUCT structure. The number of pattern words is set by the maxIters parameter. Subsequent calls to this function will result in the pattern being stored incrementally from its last setting, unless the reset_seed parameter is set to 1. (E.g. if the last pattern written to the structure was 0x00000010 before the function returns, the first pattern written to the input structure the next time the function is called will be 0x00000020, unless the reset_seed parameter is 1 (*reset_seed = 1)).

int patternGen32(char patternType[], unsigned int patternArray[], int startBitPos, int numBits, unsigned int userDefPat);
Arg1: Pattern type parameter (e.g. WW, WZ, etc.)
Arg2: Pointer to starting position of an array that will hold the pattern.
Arg3: Starting position of the first bit in the pattern, starting from 0.
Arg4: Number of bits in the pattern.
Arg5: User defined pattern - used if pattern type is for user specified pattern.
Function: General purpose pattern generating function. Patterns are generated and loaded into the input pattern array. Up to 32 pattern words are stored. The starting position of the pattern is designated in startBitPos, and the number of bits in the pattern in numBits. (E.g. if a walking 1’s pattern for the three bits 16, 17 and 18 is required, startBitPos is 16 and numBits is 3.) If a user defined pattern is designated in patternType, the pattern is passed in userDefPat.

int makeFifoVec(GSTMFIFOSTRUCT gstmFifoRec[], FIFODATASTRUCT *fifoDataVec, unsigned int start, unsigned int delta, unsigned int set_stopBit);
Arg1: The GSTMFIFOSTRUCT containing the data to be loaded into the GSTM fifos.
Arg2: The FIFODATASTRUCT that will contain the data to be loaded into the GSTM fifos.
Arg3: The first FIFODATASTRUCT array element to load the GSTMFIFOSTRUCT data into.
Arg4: The number of data words to load into FIFODATASTRUCT.
Arg5: Flag for setting stop bit in fifo data. (1 = Yes, Anything else = no).
Function: There are three fifos that can be used to transmit data per port on the GSTM, the main 26 bit fifo and two 9 bit fifos. The two 9 bit fifos are mapped to bits 14-22 and 23-31 of the same register address. For certain test purposes it is useful to generate patterns in the fifos independently. This data is stored in a GSTMFIFOSTRUCT. The function makeFifoVec converts the GSTMFIFOSTRUCT data into the proper format for the fifos (i.e. positioning the 9 bit data in the correct bit positions) in a FIFODATASTRUCT. Multiple instructions or pattern sets can be loaded into FIFODATASTRUCT by using the start and delta arguments to tell the function where in the array of FIFODATASTRUCT records to begin loading data. A stop bit will be set at the proper place in the data if the stopBit flag is set.

int gstmLoadFileInst(int nodeId, int gstmId, char fileName[]);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to load.
Arg3: Name of file containing data to load.
Function: gstmLoadFileInst opens and reads a file containing a sequence of instructions to be loaded into the GSTM fifos. It then calls loadGSTM to load the sequences into the fifos.

int loadGSTMfifos(char nodeName[], int id, int port);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to load.
Arg3: Gstm port to load.
Function: Examines the GSTMCONFIGSTRUCT pattern element to determine if a predetermined pattern or data from a file is to be loaded into the GSTM fifos, and calls the appropriate function (loadPattern or gstmLoadFileInst).

int loadGSTM(FIFODATASTRUCT *pfifoDataVec, int nodeId, int gstmId, unsigned int blockLength);
Arg1: The FIFODATASTRUCT that contains the data to be loaded into the GSTM fifos.
Arg2: Name of node where module resides.
Arg3: Id number of gstm to load.
Arg4: The number of data words to load.
Function: loadGSTM calls the utility routine loadFifo to actually load gstm fifos at (nodeId, gstmId) with blockLength words of data from the FIFODATASTRUCT specified. It checks the portsUsed entry of the configuration structure to determine which fifos to load.

int loadPattern(int nodeId, int gstmId, char patternType[], int length);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to load.
Arg3: Pattern type to load (see pattern options).
Arg4: Number of pattern words to load into the fifo.
Function: Calls the appropriate lower level functions to create and load the appropriate data patterns into the designated gstm’s transmit fifos.

int readSonFile(FILE *s_rfp, char *filename, GSTMFIFOSTRUCT gstmFifoRec[], CNTRSTRUCT *pcntrRec);
Arg1: FILE stream designator.
Arg2: Name of Sonic file to read.
Arg3: GSTMFIFOSTRUCT record to load with Sonic data.
Arg4: CNTRSTRUCT to load with book-keeping data.
Function: Reads a Sonic file and loads the data into a GSTMFIFOSTRUCT record.

int readGSTMfifo(GSTMFIFOSTRUCT gstmFifoRec[], CNTRSTRUCT *pcntrRec, int nodeId, int gstmId);
Arg1: GSTMFIFOSTRUCT record to load with data read from GSTM receive fifos.
Arg2: CNTRSTRUCT record containing number of words to read.
Arg3: Name of node where module resides.
Arg4: Id number of gstm to load.
Function: Checks the portsUsed entry of the configuration structure to determine which fifos to read, then calls the appropriate utility function to read the designated fifos. It loads the data into the GSTMFIFOSTRUCT records.
Return status: 0 if success.
	 SVX_FIFO_NOT_MT if fifo is not empty after reading is complete.
	 Other error status as listed in ERROR list.

int mctsiExpander(int tsiArrayIn[], unsigned int numEntries, int tsiArrayOut[]);
Arg1: Input pattern array.
Arg2: Number of entries in input pattern array.
Arg3: Output pattern array.
Function: The timing for the tsi emulating GSTM daughter card is 3.5 to 1 relative to the clock of the GSTM. Therefore, tsi instructions sequences must be “expanded” relative to the simple sequential form they are constructed in. (Word 1 expanded to 4 words, word 2 to 3 words, word 3 to 4 words, etc.) This function performs this expansion on a sequence of numEntries words in the input array, putting the expanded sequence in the output array. It also adds the appropriate sync bit to the fifo word that is required by the GSTM firmware when operating with this daughter card. Note: the memory reserved for the output array must be in the ratio of 7/2 relative to the input array (i.e. if there are 4 words in the input array, the output array must be at least 14 words long).

int gstm_masterReset(char nodeName[], int id);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to load.
Function: Produces a master reset of the GSTM module.

int gstm_readTestReg(char nodeName[], int id);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to load.
Function: Reads the GSTM test register and puts the results in the global GSTMTESTREGSTRUCT record.

int gstm_readStatusReg(char nodeName[], int id);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to load.
Function: Reads the GSTM status register and puts the results in the global GSTMSTATUSREGSTRUCT record.

int gstm_readControlReg(char nodeName[], int id);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to load.
Function: Reads the GSTM status register and puts the results in the global GSTMCONTROLREGSTRUCT record.

int gstm_readModeReg(char nodeName[], int id);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to load.
Function: Reads the GSTM status register and puts the results in the global GSTMMODEREGSTRUCT record.

int gstm_writeControlReg(char nodeName[], int id);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to load.
Function: Reads the global GSTMCONTROLREGSTRUCT record and writes it into the
GSTM status register.

int gstm_writeModeReg(char nodeName[], int id);
Arg1: Name of node where module resides.
Arg2: Id number of gstm to load.
Function: Reads the global GSTMMODEREGSTRUCT record and writes it into the
GSTM status register.

int setGSTM(GSTMCONFIGSTRUCT io_gstmConfigRec);
Used??

int decodeGSTMcode(GSTMFIFOSTRUCT gstmFifoRec[]);
Arg1: GSTMFIFOSTRUCT record containing line of microcode to be translated.
Function: decodeGSTMcode decodes a GSTM micro-code line passed as part of gstmFifoRec and fills elements of gstmFifoRec with integer data. It is specific to the GSTM micro-code format:
xxxx:aaaaaaabbbcccAAAAAAABBBCCC
where a and A are hex micro-code data for the first and second27 bit fifos, respectively, and bbb, ccc, BBB, CCC are for the two sets of two 9 bit fifos.

int gstmLogSummary(FILE *fplog, int nodeId, int id);
Arg1: Output stream descriptor
Arg2: Name of node where module resides.
Arg3: Id number of gstm.
Function: Writes an analysis summary to the designated output stream.

int glp_controlTest(char nodeName[], int id);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Function: Performs the LoopBack daughter card control register test. (See LoopBack Daughter card document.)

int glp_statusLineTest(char nodeName[], int id);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Function: Performs the LoopBack daughter card status line test. (See LoopBack Daughter card document.)

int glp_testRegisterTest(char nodeName[], int gstmId);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Function: Performs the LoopBack daughter card test register test. (See LoopBack Daughter card document.)

int glp_fifo_mt_full_test(char nodeName[], int id);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Function: Checks that the GSTM fifo empty and full flags operate properly. It is used with the GSTM LoopBack Daughter card.

int glp_seqAnal(char nodeName[], int id, int TR_direction);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Function: Cycles pattern sequences through the GSTM Loop Back Daughter card to test the GSTM fifos. Data is loaded into the transmit fifo, then transmitted to the receive fifo. The data in the receive fifo is read out and compared to the initial pattern. Glp_ErrorChck is called for error checking.

int glp_ErrorChck(int nodeId, int gstmId, int TR_direction, int *genPattern);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Arg3: Transmission direction between the 9 bit fifos. See GSTM and LoopBack Daughter card documentation.
Arg4: A flag- if set the function generates a pattern array to compare the data against.
Function: To compare data received in a fifo with the original data sent. Errors are counted and stored in a GSTMSTATSSTRUCT record.

int mctsi_mcCycleTest(char nodeName[], int id, int port);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Arg3: GSTM port to cycle.
Function: mctsi_mcCycleTest is the MCTSI Daughter card clock signals cycle test. It cycles the clock bits
through a pattern cycle specified in the configuration structure. It is meant to be used with a logic analyzer.

int mctsi_mcSelfTest(char nodeName[], int id, int port);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Arg3: GSTM port to cycle.
Function: mctsi_mcSelfTest is the MCTSI Daughter card clock signals self test. It cycles the clock bits through a pattern cycle. Test patterns are clocked back into the GSTM i/o fifo. Input clock patterns are checked against the output patterns. Results are sent to an updating display. (See the mctsi document.)

int mctsi_tsiCycleTest(char nodeName[], int id, int port);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Arg3: GSTM port to cycle.
Function: mctsi_tsiCycleTest is the MCTSI Daughter card TSI signals cycle test. It continuously cycles a user specified bit pattern through the taxi chip. It is meant to be used with a logic analyzer. (See the mctsi document.)

int mctsi_stoptsiCycleTest(char nodeName[], int gstmId, int port);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Arg3: GSTM port to cycle.
Function: Stops the mctsi_tsiCycleTest.

int mctsi_tsiSelfTest(char nodeName[], int id, int port);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Arg3: GSTM port to cycle.
mctsi_tsiSelfTest is the TSI status lines self test. It cycles the MC clock bits through a pattern cycle. Test patterns are clocked back into the GSTM i/o fifo. Input clock patterns are checked against the output patterns. Results are sent to an updating display. A special cable to connect the MC #2 output connector to the TSI status input connector is required. Note: The user has no control over the SYNCH19 signal that is used to test the first status line. This status line bit is simply tested against the Diag Sync19 status bit in the I/O register to see if they match. The Error Checking function keys on genErrorChck_R.testType to determine if it should make this comparison.

int mctsi_tsiLoopTest(char nodeName[], int id, int port);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Arg3: GSTM port to cycle.
mctsi_tsiLoopTest is the TSI taxi Loop test. It continuously cycles a test pattern through the taxi chip. A taxi receiver daughter card is required for this test. Received data is checked against transmitted data and the results are sent to an updating display. NOT YET IMPLEMENTED.

int mctsi_ErrorChck(int nodeId, int gstmId, int *genPattern);
Arg1: Name of node where module resides.
Arg2: Id number of gstm.
Arg3: A flag- if set the function generates a pattern array to compare the data against.
Function: To compare data received in a fifo with the original data sent through the GSTM MCTSI Daughter card. Errors are counted and stored in a GSTMSTATSSTRUCT record.

int glnk_loopTest(char nodeName[], int gstmId);

int glp_Err_log(FILE *fLog, int nodeId, int GSTMid, int portid, int fifoNo, unsigned int seqNo,
	 unsigned int expVal, unsigned int errVal, unsigned int trnsmtCnt);

int gen_ErrorChck(GENERRORCHCK genErrChck_R, int patArray[]);
Arg1: Structure that contains parameters relevant to the error checking to be done.
Arg2: Pointer to the beginning of an array that contains the patterns against which data should be checked.
Function: To make a call to the GSTM fifo reading routine, then to check the data read from the fifo against the data in the patArray array. Slightly different algorithms are used depending on the test being run. Algorithm choice is determined by parameters in the genErrChck structure. Error statistics are kept in the gstmStatsRec structure. The error logging routine is called and stop-on-error is an option if set in the analysis configuration (ANALCONFIGSTRUCT) structure.

	� TIME �10:05 AM�--� DATE �10/16/97�

�PAGE �

�PAGE �1�

� General System Test Module (Mother Board) Preliminary Design Report, Mingshen Gao, Jan 26, 1996.
� SVXII Test Stand Software, Colin Gay, Harlan Robins, July 18, 1995
� FIB Drate Fanout Module, John Anderson et al., Document # ESE-SVX-951128, last revised Nov. 11, 1996.

